欢迎来到天天文库
浏览记录
ID:28970226
大小:921.08 KB
页数:7页
时间:2018-12-15
《湖北省黄冈中学届高三上学期期末考试数学理_1》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、湖北省黄冈中学2008届高三(上)期末考试数学试题(理科)第Ⅰ卷(选择题共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.复数在复平面中所对应的点到原点的距离为()A.B.C.1D.2.设集合,则下列关系中不正确的是()A.B.C.D.3.给出两个命题:p:
2、x
3、=x的充要条件是x为正实数;q:存在反函数的函数一定是单调函数.则下列复合命题中的真命题是()A.p且qB.p或qC.┓p且qD.┓p或q4.设向量与的模分别为6和5,夹角为120°,则等于()A.B.C.D.5.若的展开式中的系数是80,则实数a
4、的值为()A.-2B.C.D.26.已知函数f(x)是定义在R上的奇函数,当x<0时,,那么的值为()A.3B.-3C.2D.-27.若国际研究小组由来自3个国家的20人组成,其中A国10人,B国6人,C国4人,按分层抽样法从中选10人组成联络小组,则不同的选法有()种.A.B.C.D.8.二次函数,当n依次取1,2,3,4,…,n,…时,图象在x轴上截得的线段的长度的总和为()A.1B.2C.3D.49.平面、、两两互相垂直,点,点A到、的距离都是3,P是上的动点,P到的距离是到点A距离的2倍,则点P的轨迹上的点到的距离的最小值是()A.B.C.D.10.某种电热水器的水箱
5、盛满水是200升,加热到一定温度可浴用,浴用时,已知每分钟放水34升,在放水的同时注水,t分钟注水2t2升,当水箱内水量达到最小值时,放水自动停止,现假定每人洗浴用水65升,则该热水器一次至多可供()A.3人洗澡B.4人洗澡C.5人洗澡D.6人洗澡第Ⅱ卷(非选择题共100分)二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置上.)11.不等式的解集为________________.12.湖面上漂着一个小球,湖水结冰后将球取出,冰面上留下一个直径为12cm,深2cm的空穴,则该球的表面积为_____________cm2.()13.已知抛物线的焦点为
6、F,AB是过焦点F的弦,且AB的倾斜角为30°,的面积为4,则p=____________.14.数列{an}满足:a1=1,且对任意的m、都有:,则_____________.15.直线l:过点,若可行域的外接圆的直径为,则实数n的值为________________.三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.)16.(本小题满分12分)已知向量,记(1)求f(x)的值域及最小正周期;(2)若,其中,求角17.(本小题满分12分)设在12个同类型的零件中有2个次品,抽取3次进行检验,每次任取一个,并且取出不再放回,若以表示取出次品的个数.
7、求的分布列,期望及方差.18.(本小题满分12分)已知数列{an}的前n项和为Sn(),且(1)求证:是等差数列;(2)求an;(3)若,求证:19.(本小题满分12分)PDACBO在三棱锥P—ABC中,,点O、D分别是AC、PC的中点,底面ABC.(1)求证OD∥平面PAB;(2)求二面角A—BC—P的大小.20.(本小题满分13分)已知函数的图象经过原点,且在x=1处取得极值,直线到曲线在原点处的切线所成的角为45°.(1)求的解析式;(2)若对于任意实数和恒有不等式成立,求m的最小值.21.(本小题满分14分)以点A为圆心,以为半径的圆内有一点B,已知,设过点B且与圆A
8、内切于点T的圆的圆心为M.(1)当取某个值时,说明点M的轨迹P是什么曲线;(2)点M是轨迹P上的动点,点N是上的动点,把
9、MN
10、的最大值记为,求的取值范围.参考答案(理)1.B2.D3.D4.D5.D6.C7.D8.A9.A10.B11.12.13.214.15.816.(1)根据条件可知:因为f(x)的定义域为∴f(x)的值域为,f(x)的最小正周期为(2)所以,,又因为,所以所以17.的可能值为0,1,2.若=0表示没有取出次品,其概率为;同理∴的分布为012p∴,18.(1)∵,∴,又∵∴∴数列是等差数列,且(2)当时,当n=1时,不成立.∴(3),∴.∴左边显然成立.
11、19.(1)∵O、D分别为AC、PC的中点,∴OD∥PA.又PA平面PAB,∴OD∥平面PAB.(2)∵又∵平面ABC,∴PA=PB=PC,取BC中点E,连结PE和OE,则∴是所求二面角的平面角.又,易求得在直角中,,∴二面角A—BC—P的大小为20.(1)由题意有,且又曲线在原点处的切线的斜率而直线到此切线所成的角为45°,∴,解得b=-3.代入得a=0,故f(x)的解析式为(2)由可知,f(x)在和上递增;在[-1,1]上递减,又∴f(x)在[-2,2]上的最大值和最小值分别为-2,2.又∵、,∴.
此文档下载收益归作者所有