欢迎来到天天文库
浏览记录
ID:28950826
大小:275.50 KB
页数:6页
时间:2018-12-15
《新人教版八年级上《乘法公式》同步练习【2】及答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、精品乘法公式同步练习一、课前预习(5分钟训练)1.下列各式运算正确的是()A.a2+a3=a5B.a2·a3=a5C.(ab2)3=ab6D.a10÷a2=a52.用乘法公式计算:(1)5012;(2)99.82;(3)60×59;(4)20052-2004×2006.二、课中强化(10分钟训练)1.计算:(1)(a2+1)(a2-1)-(-a2)·a2;(2)(2a-b)(2a+b)-(-3a-b)(-3a+b);(3)x2-(4-x)2;(4)(3x-2y)2-4(2x-y)(x-y).2.已知(a+b)2=7,(a-b)2=4,求a2+b2和ab的值.3.
2、已知△ABC的三边a、b、c满足a2+b2+c2-ab-bc-ac=0,试判断△ABC的形状.4.解方程:(1)9x(4x-7)-(6x+5)(6x-5)+38=0;(2)(y2-3y+2)(y2+3y-2)=y2(y+3)(y-3).三、课后巩固(30分钟训练)1.下列各式中,相等关系一定成立的是()精品A.(x-y)2=(y-x)2B.(x+6)(x-6)=x2-6C.(x+y)2=x2+y2D.x2+2xy2-y2=(x+y)22.下列运算正确的是()A.(a+3)2=a2+9B.(x-y)2=x2-xy+y2C.(1-m)2=1-2m+m2D.(x2-y
3、2)(x+y)(x-y)=x4-y43.将面积为a2的正方形边长增加2,则正方形的面积增加了()A.4B.2a+4C.4a+4D.4a4.下列多项式乘法中,不能用平方差公式计算的是()A.(a+1)(2a-2)B.(2x-3)(-2x+3)C.(2y-)(+2y)D.(3m-2n)(-3m-2n)5.不等式(2x-1)2-(1-3x)2<5(1-x)(x+1)的解集是()A.x>-2.5B.x<-2.5C.x>2.5D.x<2.56.计算:(1)(1.2x-y)(-y-1.2x);(2)15×(-14);(3)[2x2-(x+y)(x-y)][(z-x)(x+z
4、)+(y-z)(y+z)];(4)(a-2b+3c)(a+2b-3c).7.(1)已知x+y=6,xy=4,求①x2+y2,②(x-y)2,③x2+xy+y2的值.(2)已知a(a-3)-(a2-3b)=9,求-ab的值.8.图15-3-1为杨辉三角系数表部分,它的作用是可以按规律写出形如(a+b)n(其中n为正整数)展开式的系数,请你仔细观察下表中的规律,填出(a+b)4展开式中所缺的系数.精品图15-3-1(a+b)=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,(a+b)4=a2+_________a3b+____
5、_____a2b2+_________ab3+b4.9.大家已经知道,完全平方公式和平方差公式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,例如:2x(x+y)=2x2+2xy就可以用图15-3-2(1)的面积表示.图15-3-2(1)请写出图(2)所表示的代数恒等式:__________;(2)请写出图(3)所表示的代数恒等式:__________;(3)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2.10.如图15-3-3所示,长方形ABCD被分成六个大小不一的正方形,已知中间一个小正方形面积
6、为4,求长方形ABCD中最大正方形与最小正方形的面积之差.图15-3-3精品参考答案一、课前预习(5分钟训练)1.B2.解:(1)5012=(500+1)2=5002+2×500×1+12=250000+1000+1=251001.(2)99.82=(100-0.2)2=1002-2×100×0.2+0.22=10000-40+0.04=9960.04.(3)60×59=(60+)(60-)=602-()2=3600-=3599.(4)原式=20052-(2005-1)×(2005+1)=20052-(20052-1)=1.二、课中强化(10分钟训练)1.解:(
7、1)原式=a4-1+a4=2a4-1.(2)原式=4a2-b2-(9a2-b2)=4a2-b2-9a2+b2=-5a2.(3)原式=x2-(16-8x+x2)=x2-16+8x-x2=8x-16.(4)原式=9x2-12xy+4y2-4(2x2-3xy+y2)=9x2-12xy+4y2-8x2+12xy-4y2=x2.2.解:由(a+b)2=7,得a2+2ab+b2=7.①由(a-b)2=4,得a2-2ab+b2=4.②①+②得2(a2+b2)=11,∴a2+b2=.①-②得4ab=3,∴ab=.3.解:∵a2+b2+c2-ab-bc-ac=0,∴2a2+2b2
8、+2c2-2ab-2bc
此文档下载收益归作者所有