小学奥数:7-6-3 计数之对应法.教师版

小学奥数:7-6-3 计数之对应法.教师版

ID:28946873

大小:891.50 KB

页数:9页

时间:2018-12-15

小学奥数:7-6-3 计数之对应法.教师版_第1页
小学奥数:7-6-3 计数之对应法.教师版_第2页
小学奥数:7-6-3 计数之对应法.教师版_第3页
小学奥数:7-6-3 计数之对应法.教师版_第4页
小学奥数:7-6-3 计数之对应法.教师版_第5页
资源描述:

《小学奥数:7-6-3 计数之对应法.教师版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、7-6-3计数之对应法教学目标前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用.例题精讲将难以计数的数量与某种可计量的事物联系起来,只要能建立一一对应的关系,那么这两种事物在数量上是相同的.事实上插入法和插板法都是对应法的一种表现形式.模块一、图形中的对应关系【例1】在8×8的方格棋盘中,取出一个由三个小方格组成的“L”形(如图),

2、一共有多少种不同的方法?【考点】计数之图形中的对应关系【难度】3星【题型】解答【解析】注意:数“不规则几何图形”的个数时,常用对应法.第1步:找对应图形每一种取法,有一个点与之对应,这就是图中的A点,它是棋盘上横线与竖线的交点,且不在棋盘边上.第2步:明确对应关系 从下图可以看出,棋盘内的每一个点对应着4个不同的取法(“L”形的“角”在2×2正方形的不同“角”上).第3步:计算对应图形个数由于在8×8的棋盘上,内部有7×7=49(个)交叉点,第4步:按照对应关系,给出答案故不同的取法共有49×4=196(种).评注:通过上面两

3、个范例我们知道,当直接去求一个集合元素的个数较为困难的时候,可考虑采用相等的原则,把问题转化成求另一个集合的元素个数.【答案】【例1】在8×8的黑白相间染色的国际象棋棋盘中,以网格线为边的、恰包含两个白色小方格与一个黑色小方格的长方形共有多少个?【考点】计数之图形中的对应关系【难度】3星【题型】解答【解析】首先可以知道题中所讲的长方形中间的那个小主格为黑色,这是因为两个白格不相邻,所以不能在中间.显然,位于棋盘角上的黑色方格不可能被包含在这样的长方形中.下面分两种情况来分析:第一种情况,一个位于棋盘内部的黑色方格对应着两个这样

4、的长方形(一横一竖);第二种情况,位于边上的黑色方格只能对应一个长方形.由于在棋盘上的32个黑色方格中,位于棋盘内部的18个,位于边上的有12个,位于角上的有2个,所以共有个这样的长方形.本题也可以这样来考虑:事实上,每一行都有6个长方形,所以棋盘上横、竖共有长方形个.由于棋盘上的染色具有对称性,因此包含两个白色小方格与一个黑色小方格的长方形正好与包含两个黑色小方格与一个白色小方格的长方形具有一一对应关系,这说明它们各占一半,因此所求的长方形个数为个.【答案】【巩固】用一张如图所示的纸片盖住方格表中的四个小方格,共有多少种不同

5、的放置方法?【考点】计数之图形中的对应关系【难度】3星【题型】解答【解析】如图,将纸片中的一个特殊方格染为黑色,下面考虑此格在方格表中的位置.易见它不能位于四个角上;若黑格位于方格表中间如图浅色阴影所示的正方形内的某格时,纸片有4种不同的放法,共计种;若黑格位于方格表边上如图深色阴影所示的方格中时,纸片的位置随之确定,即只有1种放法,此类放法有种.所以,纸片共有种不同的放置方法.【答案】种【例2】图中可数出的三角形的个数为.【考点】计数之图形中的对应关系【难度】4星【题型】填空【解析】这个图不像我们以前数三角形那样规则,粗看似

6、乎看不出其中的规律,不妨我们取出其中的一个三角形,发现它的三条边必然落在这个图形中的三条大线段上,而每三条大线段也正好能构成一个三角形,因此三角形的个数和三条大线段的取法是一一对应的关系,图中一共有8条大线段,因此有个三角形.【答案】个三角形【例1】如图所示,在直线上有7个点,直线上有9个点.以上的点为一个端点、上的点为另一个端点的所有线段中,任意3条线段都不相交于同一个点,求所有这些线段在与之间的交点数.【考点】计数之图形中的对应关系【难度】4星【题型】解答【解析】常规的思路是这样的:直线上的7个点,每个点可以与直线上的9个

7、点连9根线段,然后再分析这些线段相交的情况.如右图所示,如果注意到下面这个事实:对于直线上的任意两点、与直线上的任意两点、都可以构成一个四边形,而这个四边形的两条对角线、的交点恰好是我们要计数的点,同时,对于任意四点(与上任意两点)都可以产生一个这样的交点,所以图中两条线段的交点与四边形有一一对应的关系.这说明,为了计数出有多少个交点,我们只需要求出在直线与中有多少个满足条件的四边形就可以了!从而把问题转化为:在直线上有7个点,直线上有9个点.四边形有多少个?其中点、位于直线上,点、位于直线上.这是一个常规的组合计数问题,可以

8、用乘法原理进行计算:由于线段有种选择方式,线段有种选择方式,根据乘法原理,共可产生个四边形.因此在直线与之间共有756个交点.【答案】个交点模块二、数字问题中的对应关系【例2】有多少个四位数,满足个位上的数字比千位数字大,千位数字比百位大,百位数字比十位数字大?【考点】计数之

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。