欢迎来到天天文库
浏览记录
ID:28914587
大小:186.00 KB
页数:9页
时间:2018-12-15
《七年级数学上学期期中复习教案2 (新版)鲁教版五四制》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、期中复习教学目标1、通过观察、操作、想象、推理、交流等活动,发展空间观念,积累数学活动经验。2、在探索图形性质的过程中,发展推理能力和有条理的表达能力。3、进一步认识三角形的有关概念,了解三边之间的关系以及三角形的内角和,了解三角形的稳定性。4、了解图形的全等,能利用全等图形进行简单的图案设计,经历探索三角形全等条件的过程,掌握两个三角形全等的条件,能应用三角形全等解决一些实际问题。5、在分别给出两角夹边、两边夹角或三边的条件下,能够利用尺规作出三角形。6、尝试用图形表达自己的想法,发展基本的创新意识和能力。7、在丰富的现实情境中,经历观察,折叠,剪纸,图形欣赏与设计等数学
2、活动过程,进一步发展空间观念。8、 通过丰富的生活实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质。9、探索并了解基本图形(线段、角、等腰)的轴对称性及其相关性质。10、能够按要求作出简单图形经过轴对称后的图形,探索简单图形之间的轴对称关系,并能指出对称轴。11、现实生活中的轴对称图形,能利用轴对称进行一些图案设计,体验轴对称在现实生活中的广泛应用和丰富的文化价值。12、对直角三角形的特殊性质全面地进行总结.13、让学生回顾本章的知识,同时重温这些知识尤其是勾股定理的获得和验证的过程,体会勾股定理及其逆定理的广泛应用.重点1、运用全等三角形的识别
3、方法来探寻三角形以及运用全等三角形的知识解决实际问题。2、轴对称的基本性质。3、探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。难点1、运用全等三角形知识来解决实际问题。2、了解基本图形(线段、角、等腰)的轴对称性及其相关性质并会应用3、利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理。解决实际问题.教学过程(课程导入、新课解析、例题精讲、课堂练习、作业设计等)一、基础知识梳理(一)主要概念1.轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.角是轴对称图形,角平分线所在的直
4、线是它的对称轴.2.线段的垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线(简称中垂线).3.等腰三角形:有两条边相等的三角形叫做等腰三角形.(二)主要性质1.角的平分线上的点到这个角的两边的距离相等.2.线段垂直平分线上的点到这条线段两个端点的距离相等.3.等腰三角形是轴对称图形等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴.等腰三角形的两个底角相等.4.两个图形关于某条直线成轴对称,则对应点所连的线段被对称轴垂直平分.对应线段相等,对就角相等.二、考点
5、与命题趋向分析(一)能力1.通过具体实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质. 2.能够按要求作出简单平面图形经过一次或两次轴对称后的图形;探索简单图形之间的轴对称关系,并能指出对称轴.3.探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性及其相关性质.4.欣赏现实生活中的轴对称图形,结合现实生活中典型实例了解并欣赏物体的镜面对称,能利用轴对称进行图案设计.5.了解角平分线及其性质.6.了解线段垂直平分线及其性质.7.了解等腰三角形的有关概念,探索并掌握等腰三角形的性质.(二)命题趋向分析1.中考中常在拼图中考查轴对
6、称的有关概念,考查学生动手操作能力.【例1】两个全等的三角板,可以拼出各种不同的图形,图中已画出其中一个三角形,请你分别补出另一个与其全等的三角形,使每个图形分别成不同的轴对称图形(所画三角形可与原三角形有重叠部分).【思路分析】只要对轴对称图形的概念清楚,弄清题意,本题还是很容易完成的,现举几例如下.【解】2.有些找规律题也利用轴对称图形出题.【例2】把26个英文字母按规律分成5组,现在还有5个字母D、M、Q、X、Z,请你按原规律补上,其顺序依次为()①FRPJLG□;②HIO□③NS□;④BCKE□⑤VATYWU□A.QXZWDB.DMQZXC.ZXMDQD.QXZDM
7、【思路分析】第①组不是中心对称图形,也不是轴对称图形,应填Q;第②组既是中心对称图形,也是轴对称图形,应填X;第③组是中心对称图形,不是轴对称图形,应填Z;第④组不是中心对称图形,仅是轴对称图形,并且对称轴为一条水平线,应填D;第⑤组也不是中心对称图形,仅是轴对称图形,并且对称轴为一条竖线,应填M.【解】选D三、解题方法与技巧方法1:转化方法【例1】如图所示,已知等腰三角形ABC,AB边的垂直平分线交AC于D,AB=AC=8,BC=6,求△BDC周长.【解】∵DE是AB的垂直平分线∴点B、A关于BD轴对称∴AD=B
此文档下载收益归作者所有