欢迎来到天天文库
浏览记录
ID:28880280
大小:399.50 KB
页数:11页
时间:2018-12-14
《时间的序列课程设计》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、实用标准文案时间序列分析课程设计院系数理学院专业统计学班级2班学号姓名精彩文档实用标准文案题目某地区连续40年的谷物产量(单位:千吨)0.970.451.611.261.371.431.321.230.840.891.181.331.210.980.910.611.230.971.100.740.800.810.800.600.590.630.870.360.810.910.770.960.930.950.650.980.700.861.320.88(1)写出一个恰当的模型实现上述想法;(2)利用Eviwes软件进行分析预测;(3)比较这个模型和其它模型对数据拟合的差异,
2、给出最优模型,并给出给出最小均方误差预测摘要 时间序列就是按照时间的顺序记录的一列有序数据。对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势。时间序列分析在日常生活中随处可见,有着非常广泛的应用领域。 本文用时间序列分析方法,对一段时间序列进行了拟合。通过对某地区过去40年的谷物产量进行观察分析,建立合适的ARMA模型,对未来4年的产量序列进行预测。然后对预测值和真实值进行比较,得出结论,所建立的模型有较好的拟合效果,从而提供了一个行情预测的有效方法。利用Eviwes软件对问题进行分析,判断样本数据的平稳性及纯随
3、机性。并进行模型拟合,做出合理的预测。关键词平稳性(smoothandsteady)自相关(correlation)白噪声(whitenoise)拟合(intend)预测(expand)精彩文档实用标准文案目录一:引言与基本原理 ………………………………………………1 二:处理过程………………………………………2 三:问题的分析………………………………………………7四:总结………………………………………………8精彩文档实用标准文案引言在一个学期的时间里,听了俞泽鹏老师关于时间序列分析的课程后,我对时间序列有了初步的了解和认识。结合老师上课所讲内容及课后搜集的一些参考资料,
4、我写下一些我对时间序列的浅显理解本文章通过对一些具体样本的研究,包括平稳性,自相关性,以及模型的拟合与预测,实现特殊到一般,对时间序列有了更深的了解基本原理1.时间序列在统计学研究中,常用按时间顺序排列的一组随机变量X1,X2,…,Xt…来表示一个随机时间的时间序列,简记为:或称作时间序列。2.平稳序列 基本上不存在趋势的序列。平稳序列中的各观察值基本上在某个固定的水平上波动,虽然在不同的时间段波动的程度不同,但不存在某种规律,而其波动可以看成是随机的。 3.非平稳序列 包含趋势性、季节性或周期性的序列,它可能含其中的一种成份,也可能是几种成份的组合。又可分为有趋势(t
5、end)的序列,有趋势、季节性(seasonality)和周期性(cyclists)的序列,即复合型序列4.建模步骤a.模型计算b.模型识别c.参数估计d.模型检验e.模型优化f.序列预测5预测方法AR(p)模型样本自相关系数拖尾,偏自相关系数p阶截尾,MA(q)模型样本自相关系数q阶截尾,偏自相关系数拖尾,ARMA(p,q)模型样本自相关系数拖尾,偏自相关系数也拖尾。通过观察样本时序图和自相关图,利用这些知识进行合理预测。6.判断方法平稳时间序列自相关系数一直都比较小,始终控制在两倍的标准层范围以内,可以认为该序列自始至终都在零轴附近波动。或者是随着延迟期数的增加,自相
6、关系数很快的衰减于0.精彩文档实用标准文案处理过程数据图。2时序图精彩文档实用标准文案.样本自相关图.模型拟合图13精彩文档实用标准文案拟合结果图1模型拟合图24精彩文档实用标准文案拟合结果图2方差自相关图5精彩文档实用标准文案拟合效果图预测题头图预测41-44的产量6精彩文档实用标准文案.预测结果图(1)先根据时序图,没有明显的周期性,也没有明显的趋势性,且数据在常数附近波动,大致可以判断该序列平稳。再根据自相关系数图,自相关图延迟两期以后,迅速缩减到两倍标准差内,偏自相关图延迟一阶以后迅速缩减到两倍标准差内,所以可以判断该序列平稳。最后从自相关图的最后一列P值,取α=
7、0.1,从图中我们可以看到:从延迟1期到8期P值都是小于α=0.1,说明该序列有短期相关性,至少我们有90%的把握说明该序列属于非白噪声序列。从自相关图看,可以判断是2阶截尾的,认为偏自相关图是拖尾的,所以我们用MA来拟合此模型。最后一列P值都明显大于0.05,所以残差序列为白噪声序列,说明模型通过了显著性检验,拟合的很好。写出MA(2)模型:Xt=0.950+(1-0.233*B-0.252*B^2)εtAIC=0.2009737精彩文档实用标准文案从偏自相关图看认为是一阶截尾的,自相关图是拖尾的,我们选择用AR(1)模型来
此文档下载收益归作者所有