欢迎来到天天文库
浏览记录
ID:28867768
大小:136.50 KB
页数:7页
时间:2018-12-14
《七年级数学 2.2 整式的加减(1)教案 人教新课标版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.2整式的加减(1)教学内容课本第63页至第66页.教学目标1.知识与技能(1)了解同类项、合并同类项的概念,掌握合并同类项法则,能正确合并同类项.(2)能先合并同类项化简后求值.2.过程与方法经历类比有理数的运算律,探究合并同类项法则,培养学生观察、探索、分类、归纳等能力.3.情感态度与价值观掌握规范的解题步骤,养成良好的学习习惯,通过比较两种求代数式值的方法,体会合并同类项的作用.重、难点与关键1.重点:掌握合并同类项法则,熟练地合并同类项.2.难点:多字母同类项的合并.3.关键:正确理解同类项概念和合并同类项法则.教具准备投影仪.
2、教学过程一、新授有理数可以进行加减计算,那么整式能否可以加减运算呢?怎样化简呢?我们来看本章引言中的问题(2).在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段所需的时间就是2.1t小时,则这段铁路的全长是100t+120×2.1t,即100t+252t1.类比数的运算,我们应如何化简式子100t+252t呢?(1)运用有理数的运算律计算:100×2+252×2=______;100×(-2)+252×(-2)=________.(2)根据(1)中的方法完成下面的运算,并说明其中的道理.思路点拨:根据逆用乘法对加
3、法的分配律可得:100t+252t=________.思路点拨:逆用乘法对加法的分配律可得:100×2+252×2=(100+252)×2=352×2100×(-2)+252×(-2)=(100+252)×(-2)=352×(-2)我们知道字母可以表示数,如果用t表示上述算术中的数2(或-2)就有,100t+252t=(100+252)×t=352t.事实上,100t+252t与100×2+252×2和100×(-2)+252×(-2)有相同的结构,都是两个数分别与同一个数乘积的和,这里t表示同一个因数,因此根据分配律也应该有:100t+
4、252t=(100+252)t=352t2.填空:(1)100t-252t=()t;(2)3x2+2x2=()x2;(3)3ab24ab2=()ab2.上述运算有什么共同特点,你能从中得出什么规律?思路点拨:上述两个探究,教师组织学生分四人小组进行讨论,引导学生观察、类比,从而发现规律,鼓励学生用自己的语言表达.对于上面的(1)、(2)、(3),利用分配律可得100t-252t=(100-252)t=-152t3x2+2x2=(3+2)x2=5x23ab2-4ab2=(3-4)ab2=-ab2这就是说,上面的三个多项式都可以合并为一个单项
5、式.具备什么特点的多项式可以合并呢?观察(1)中多项式的项100t和-252t,它们都含有相同字母t,并且t的指数都是1;(2)中的多项式的项3x2+2x2都含有相同字母x,并且字母x的指数都是2;(3)中的多项式的项3ab2和-4ab2都含有字母a,b,并且字母a的指数都是1,b的指数都是2.像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,几个常数项也是同类项.3.思考:下列各组是不是同类项:(1)0.5x2y和0.2xy2;(2)4abc和4ab;(3)-5m2n3和2n3m2;(4)7xnyn+1和-3xnyn+1
6、.思路点拨:根据同类项定义进行判断,同类项应所含字母相同,并且相同字母的指数也相同,二者缺一不可,与其系数无关,与其字母顺序无关.(1)题虽然所含字母相同,但相同字母的指数不同,(2)题所含字母不同;(3)、(4)符合同类项定义,所以(3)、(4)是同类项,(1)、(2)不是同类项.因为多项式中的字母表示的是数,所以我们也可以运用交换律、结合律、分配律把多项式中的同类项进行合并.例如,4x2+2x+7+3x-8x2-2(找出多项式中的同类项)=4x2-8x2+2x+3x+7-2(交换律)=(4x2-8x2)+(2x+3x)+(7-2)(结
7、合律)=(4-8)x2+(2+3)x+(7-2)(分配律)=-4x2+5x+5把多项式中的同类项合并成一项,叫做合并同类项.合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系?学生交流后,教师归纳:合并同类项法则:在合并同类项时,把同类项的系数相加,字母和字母的指数保持不变.若两个同类项的系数互为相反数,则两项的和等于零,即这两项相抵消,如-3ab2+3ab2=(-3+3)ab2=0·ab2=0.多项式中只有同类项才能合并,不是同类项不能合并.通常我们把一个多项式的各项按照某个字母的指数从大到
8、小(降幂)或者从小到大(升幂)的顺序排列,如-4x2+5x+5或写成5+5x-4x2.二、范例学习例1.合并下列各式的同类项:(1)xy2-xy2;(2)-3x2y+2x2y+3xy2-2xy
此文档下载收益归作者所有