欢迎来到天天文库
浏览记录
ID:28764707
大小:74.00 KB
页数:6页
时间:2018-12-14
《第2讲 函数的单调性与最大(小)值.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、第2讲函数的单调性与最大(小)值一、选择题1.下列函数中,既是偶函数又在(0,+∞)内单调递减的函数是( ).A.y=x2B.y=
2、x
3、+1C.y=-lg
4、x
5、D.y=2
6、x
7、解析 对于C中函数,当x>0时,y=-lgx,故为(0,+∞)上的减函数,且y=-lg
8、x
9、为偶函数.答案 C2.已知函数f(x)为R上的减函数,则满足f(
10、x
11、)<f(1)的实数x的取值范围是( )A.(-1,1)B.(0,1)C.(-1,0)∪(0,1)D.(-∞,-1)∪(1,+∞)解析 ∵f(x)在R上为减函数且f(
12、x
13、)<f(
14、1),∴
15、x
16、>1,解得x>1或x<-1.答案 D3.若函数y=ax与y=-在(0,+∞)上都是减函数,则y=ax2+bx在(0,+∞)上是( )A.增函数B.减函数C.先增后减D.先减后增解析∵y=ax与y=-在(0,+∞)上都是减函数,∴a<0,b<0,∴y=ax2+bx的对称轴方程x=-<0,∴y=ax2+bx在(0,+∞)上为减函数.答案B4.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(-3)等于( ).A.2B.3C.6D.9解析 f(1)=
17、f(0+1)=f(0)+f(1)+2×0×1=f(0)+f(1),∴f(0)=0.f(0)=f(-1+1)=f(-1)+f(1)+2×(-1)×1=f(-1)+f(1)-2,∴f(-1)=0.f(-1)=f(-2+1)=f(-2)+f(1)+2×(-2)×1=f(-2)+f(1)-4,∴f(-2)=2.f(-2)=f(-3+1)=f(-3)+f(1)+2×(-3)×1=f(-3)+f(1)-6,∴f(-3)=6.答案 C5.函数y=-x2+2x-3(x<0)的单调增区间是( )A.(0,+∞)B.(-∞,1]C.
18、(-∞,0)D.(-∞,-1]解析 二次函数的对称轴为x=1,又因为二次项系数为负数,拋物线开口向下,对称轴在定义域的右侧,所以其单调增区间为(-∞,0).答案 C6.设函数y=f(x)在(-∞,+∞)内有定义,对于给定的正数K,定义函数fK(x)=取函数f(x)=2-
19、x
20、,当K=时,函数fK(x)的单调递增区间为( ).A.(-∞,0)B.(0,+∞)C.(-∞,-1)D.(1,+∞)解析 f(x)=⇔f(x)=f(x)的图象如右图所示,因此f(x)的单调递增区间为(-∞,-1).答案 C二、填空题7.奇函数
21、f(x)(x∈R)满足:f(-4)=0,且在区间[0,3]与[3,+∞)上分别递减和递增,则不等式(x2-4)f(x)<0的解集为________.解析 当x2-4>0,即x<-2或x>2时,f(x)<0.由f(x)的图像知,x<-4或20,则-222、x23、的递增区间是_______.解析y=-(x-3)24、x25、=作出该函数的图像,观察图像知26、递增区间为.答案9.已知函数f(x)=2ax2+4(a-3)x+5在区间(-∞,3)上是减函数,则a的取值范围是________.解析 ①当a=0时,f(x)=-12x+5在(-∞,3)上为减函数;②当a>0时,要使f(x)=2ax2+4(a-3)x+5在区间(-∞,3)上是减函数,则对称轴x=必在x=3的右边,即≥3,故0<a≤;③当a<0时,不可能在区间(-∞,3)上恒为减函数.综合知:a的取值范围是.答案 10.已知函数f(x)=(a是常数且a>0).对于下列命题:①函数f(x)的最小值是-1;②函数f(x)27、在R上是单调函数;③若f(x)>0在上恒成立,则a的取值范围是a>1;④对任意的x1<0,x2<0且x1≠x2,恒有f<.其中正确命题的序号是____________.解析 根据题意可画出草图,由图象可知,①显然正确;函数f(x)在R上不是单调函数,故②错误;若f(x)>0在上恒成立,则2a×-1>0,a>1,故③正确;由图象可知在(-∞,0)上对任意的x1<0,x2<0且x1≠x2,恒有f<成立,故④正确.答案 ①③④三、解答题11.求函数y=a1-x2(a>0且a≠1)的单调区间.解当a>1时,函数y=a1-x28、2在区间[0,+∞)上是减函数,在区间(-∞,0]上是增函数;当0
22、x
23、的递增区间是_______.解析y=-(x-3)
24、x
25、=作出该函数的图像,观察图像知
26、递增区间为.答案9.已知函数f(x)=2ax2+4(a-3)x+5在区间(-∞,3)上是减函数,则a的取值范围是________.解析 ①当a=0时,f(x)=-12x+5在(-∞,3)上为减函数;②当a>0时,要使f(x)=2ax2+4(a-3)x+5在区间(-∞,3)上是减函数,则对称轴x=必在x=3的右边,即≥3,故0<a≤;③当a<0时,不可能在区间(-∞,3)上恒为减函数.综合知:a的取值范围是.答案 10.已知函数f(x)=(a是常数且a>0).对于下列命题:①函数f(x)的最小值是-1;②函数f(x)
27、在R上是单调函数;③若f(x)>0在上恒成立,则a的取值范围是a>1;④对任意的x1<0,x2<0且x1≠x2,恒有f<.其中正确命题的序号是____________.解析 根据题意可画出草图,由图象可知,①显然正确;函数f(x)在R上不是单调函数,故②错误;若f(x)>0在上恒成立,则2a×-1>0,a>1,故③正确;由图象可知在(-∞,0)上对任意的x1<0,x2<0且x1≠x2,恒有f<成立,故④正确.答案 ①③④三、解答题11.求函数y=a1-x2(a>0且a≠1)的单调区间.解当a>1时,函数y=a1-x
28、2在区间[0,+∞)上是减函数,在区间(-∞,0]上是增函数;当0
此文档下载收益归作者所有