资源描述:
《高中数学必修3教案3.1.1随机事件的概率》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、精品第三章概率3.1随机事件的概率课题:3.1.1随机事件的概率教学目标:1.通过在抛硬币等试验获取数据,了解随机事件、必然事件、不可能事件的概念.2.通过获取数据,归纳总结试验结果,发现规律,正确理解事件A出现的频率的意义,真正做到在探索中学习,在探索中提高.3.通过数学活动,即自己动手、动脑和亲身试验来理解概率的概念,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系,体会数学知识与现实世界的联系.教学重点:理解随机事件发生的不确定性和频率的稳定性.教学难点:理解频率与概率的关系.教学方法:讲授法课时
2、安排1课时教学过程一、导入新课:在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.(故事略)在自然界和实际生活中,我们会遇到各种各样的现象.如果从结果能否预知的角度来看,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定性现象;另一类现象的结果是无法预知的,即在一定的条件下,出现那种结果是无法预先确定的,这类现象称为随机现象.随机现象是我们研究概率的基础,为此我们学习随机事件的概率.二、新课讲解:1、提出问题(1)什么
3、是必然事件?请举例说明.(2)什么是不可能事件?请举例说明.(3)什么是确定事件?请举例说明.注:以上3问初中已经学习了.(4)什么是随机事件?请举例说明.(5)什么是事件A的频数与频率?什么是事件A的概率?(6)频率与概率的区别与联系有哪些?观察:(1)掷一枚硬币,出现正面;(2)某人射击一次,中靶;(3)从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签;这三个事件在一定的条件下是或者发生或不一定发生的,是模棱两可的.2、活动精品做抛掷一枚硬币的试验,观察它落地时哪一个面朝上.通过学生亲自动手试验,突破学
4、生理解的难点:“随机事件发生的随机性和随机性中的规律性”.通过试验,观察随机事件发生的频率,可以发现随着实验次数的增加,频率稳定在某个常数附近,然后再给出概率的定义.在这个过程中,重视了掌握知识的过程,体现了试验、观察、探究、归纳和总结的思想方法具体如下:第一步每个人各取一枚硬币,做10次掷硬币试验,记录正面向上的次数和比例,填在下表:姓名试验次数正面朝上总次数正面朝上的比例思考:试验结果与其他同学比较,你的结果和他们一致吗?为什么?第二步由组长把本小组同学的试验结果统计一下,填入下表.组次试验总次数正面朝上总次数正面朝上
5、的比例思考:与其他小组试验结果比较,正面朝上的比例一致吗?为什么?通过学生的实验,比较他们实验结果,让他们发现每个人实验的结果、组与组之间实验的结果不完全相同,从而说明实验结果的随机性,但组与组之间的差别会比学生与学生之间的差别小,小组的结果一般会比学生的结果更接近0.5.第三步用横轴为实验结果,仅取两个值:1(正面)和0(反面),纵轴为实验结果出现的频率,画出你个人和所在小组的条形图,并进行比较,发现什么?第四步把全班实验结果收集起来,也用条形图表示.思考:这个条形图有什么特点?引导学生在每组实验结果的基础上统计全班的实
6、验结果,一般情况下,班级的结果应比多数小组的结果更接近0.5,从而让学生体会随着实验次数的增加,频率会稳定在0.5附近.并把实验结果用条形图表示,这样既直观易懂,又可以与第二章统计的内容相呼应,达到温故而知新的目的.第五步请同学们找出掷硬币时“正面朝上”这个事件发生的规律性.思考:如果同学们重复一次上面的实验,全班汇总结果与这一次汇总结果一致吗?为什么?出现正面朝上的规律性:随着实验次数的增加,正面朝上的频率稳定在0.5附近.由特殊事件转到一般事件,得出下面一般化的结论:随机事件A在每次试验中是否发生是不能预知的,但是在大
7、量重复实验后,随着次数的增加,事件A发生的频率会逐渐稳定在区间[0,1]中的某个常数上.从而得出频率、概率的定义,以及它们的关系.3、讨论结果:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件(certainevent),简称必然事件.(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件(impossibleevent),简称不可能事件.(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件.(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事
8、件(randomevent),简称随机事件;确定事件和随机事件统称为事件,用A,B,C,…表示.(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数na为事件A出现的频数(frequency);称事件A出现的比例fn(A)=为事件A出现的频率(relati