奥数:四年级奥数.计算综合.等差数列应用(b级).学生版

奥数:四年级奥数.计算综合.等差数列应用(b级).学生版

ID:28698706

大小:1.53 MB

页数:18页

时间:2018-12-13

奥数:四年级奥数.计算综合.等差数列应用(b级).学生版_第1页
奥数:四年级奥数.计算综合.等差数列应用(b级).学生版_第2页
奥数:四年级奥数.计算综合.等差数列应用(b级).学生版_第3页
奥数:四年级奥数.计算综合.等差数列应用(b级).学生版_第4页
奥数:四年级奥数.计算综合.等差数列应用(b级).学生版_第5页
资源描述:

《奥数:四年级奥数.计算综合.等差数列应用(b级).学生版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、等差数列的应用课前预习数学神童历史上间或出现神童。神童常常出现在数学、音乐、棋艺等方面。卡尔•弗雷德里希•高斯,一位数学神童,是各式各样的天才里最出色的一个。就像狮子号称万兽之王,高斯在数学家之林中称王,他有一个美号—数学王子。高斯不仅被公认为是十九世纪最伟大的数学家,并且与阿基米德、牛顿并称为历史上三个最伟大的数学家。现在阿基米德和牛顿的名字早已进入了中学的教科书,他们的工作或多或少成为大众的常识,而高斯和他的数学仍遥不可及,甚至于在大学的基础课程中也不出现。但高斯的肖像画却赫然印在10马克—流通最广泛的德国纸币上,相应地出现在美元和英镑上的分别是乔

2、治•华盛顿和伊丽莎白二世。1777年4月30日,高斯出生在德国下萨克森洲的不伦瑞克(Braunscheig),他的祖先里没有一个人可以说明为什么会产生高斯这样的天才。高斯的父亲是个普通的劳动者,做过石匠、纤夫、花农,母亲当过女仆,没有受过什么教育,但她聪明善良,有幽默感,并且个性很强,她以97岁高寿仙逝,高斯是她的独养儿子。据说高斯3岁时就发现父亲帐簿上的一处错误。高斯9岁那年在公立小学读书,一次他的老师为了让学生们有事干,叫他们把从1到100这些数加起来,高斯几乎立刻就把写好结果的石板面朝下放在自己的桌子上,当所有的石板最终被翻过时,这位老师惊讶地发

3、现只有高斯得出了正确的答案:5050,但是没有演算过程。高斯已经在脑子里对这个算术级数求了和,他注意到了1+100=101,2+99=101,3+98=101……这么一来,就等于50个101相加,从而答案是5050。高斯在晚年常幽默地宣称,在他会说话之前就会计算,还说他问了大人字母如何发音,就自己学着读起书来。高斯的早熟引起了不伦瑞克公爵的注意,这位公爵是个热心肠的赞助人。高斯14岁进不伦瑞克学院,18岁入哥廷根大学。当时的哥廷根仍默默无闻,由于高斯的到来,才使得这所日后享誉世界的大学变得重要起来。起初,高斯在做个语言学家抑或数学家之间犹豫不决,他决心

4、献身数学是1796年3月30日的事了。当他差一个月满19岁时,他对正多边形的欧几里德作图理论(只用圆规和没有刻度的直尺)做出了惊人的贡献,尤其是,发现了作正十七边形的方法,这是一个有着二千多年历史的数学悬案。高斯初出茅庐,就已经炉火纯青了,而且以后的五十年间他一直维持这样的水准。知识框架一、等差数列的相关公式(1)三个重要的公式①通项公式:递增数列:末项首项(项数)公差,递减数列:末项首项(项数)公差,回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.

5、同时还可延伸出来这样一个有用的公式:,②项数公式:项数(末项首项)公差+1由通项公式可以得到:(若);(若).找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、、40、43、46,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有项,每组3个数,所以共组,原数列有15组.当然还可以有其他的配组方法.③求和公式:和=(首项末项)项数÷2对于

6、这个公式的得到可以从两个方面入手:(思路1) (思路2)这道题目,还可以这样理解:即,和(1)中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:①4+8+12+…+32+36=(4+36)×9÷2=20×9=180,题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于;②,题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于.重难点重点:观察并找出图形、生活中的等差数列与数论有关的等差数列运算。难点:活动与操作中的等差数列运算例题精讲【

7、例1】有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【巩固】建筑工地有一批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多4块砖,已知最下层2106块砖,问中间一层多少块砖?这堆砖共有多少块?【例1】如图,把边长为1的小正方形叠成“金字塔形”图

8、,其中黑白相间染色.如果最底层有15个正方形,问其中有多少个染白色的正方形,有多少个染黑色的正

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。