欢迎来到天天文库
浏览记录
ID:28681982
大小:101.00 KB
页数:4页
时间:2018-12-12
《平面向量数量积的坐标表示教案1.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3eud教育网http://www.3edu.net50多万教学资源,完全免费,无须注册,天天更新!平面向量数量积的坐标表示教案1 教学目标1.正确理解掌握两个向量数量积的坐标表示方法,能通过两个向量的坐标求出这两个向量的数量积.2.掌握两个向量垂直的坐标条件,能运用这一条件去判断两个向量垂直.3.能运用两个向量的数量积的坐标表示去解决处理有关长度、角度、垂直等问题.重点:两个向量数量积的坐标表示,向量的长度公式,两个向量垂直的充要条件.难点:对向量的长度公式,两个向量垂直的充要条件的灵活运用.教学过程设
2、计(一)学生复习思考,教师指导. 1.A点坐标(x1,y1),B点坐标(x2,y2). =________=________ 2.A点坐标(x1,y1),B点坐标(x2,y2) =________ 3.向量的数量积满足那些运算律?(二)教师讲述新课. 前面我们已经学过了两个向量的数量积,如果已知两个向量的坐标,如何用这些坐标来表示两个向量的数量积,这是一个很有价值的问题. 设两个非零向量为=(x1,y1),=(x2,y2).为x轴上的单位向量,为y轴上的单位向量,则=x1+y1,=x2+y2
3、 3eud教育网http://www.3edu.net教学资源集散地。可能是最大的免费教育资源网!3eud教育网http://www.3edu.net50多万教学资源,完全免费,无须注册,天天更新! 这就是说:两个向量的数量积等于它们对应坐标的乘积的和. 引入向量的数量积的坐标表示,我们得到下面一些重要结论: (1)向量模的坐标表示: (2)平面上两点间的距离公式: 向量的起点和终点坐标分别为A(x1,y1),B(x2,y2),= (3)两向量的夹角公式 设=(x1,y1),=(x2
4、,y2),=θ. 4.两向量垂直的充要条件的坐标表示 =(x1,y1),=(x2,y2). 即两向量垂直的充要条件是它们对应坐标乘积的和为零. (三)学生练习,教师指导. 练习1:课本练习1. 已知a(-3,4),(5,2). 练习2:课本练习2. 已知=(2,3),=(-2,4),=(-1,-2). ·=2×(-2)+3×4=8,(+)·(-)=-7. ·(+)=0,(a+b)2=(0,7)·(0,7)=49. 练习3:已知A(1,2),B(2,3),C(-2,5). 求
5、证:△ABC是直角三角形. 证:∵=(1,1),=(-3,3),=(-4,2). 经检验,·=1×(-3)+1×3=0. ∴⊥,△ABC是直角三角形. (四)师生共同研究例题. 例1:已知向量=(3,4),=(2,-1).3eud教育网http://www.3edu.net教学资源集散地。可能是最大的免费教育资源网!3eud教育网http://www.3edu.net50多万教学资源,完全免费,无须注册,天天更新! (1)求与的夹角θ, (2)若+x与-垂直,求实数x的值. 解:(1)=(
6、3,4),=(2,-1). (2)+x与-垂直, (+x)·(-)=0,+x=(3,4)+x(2,-1)=(2x+3,4-x) -=(3,4)-(2,-1)=(1,5). 例2:求证:三角形的三条高线交于一点. 证:设△ABC的BC、AC边上的高交于P点,现分别以BC、PA所在直线为x轴、y轴,建立直角坐标系,设有关各点的坐标为B(x1,0),C(x2,0),A(0,y1),P(0,y). ∵⊥,=(-x1,y),=(-x2,y1). (-x1)×(-x2)+y×y1=0. 即
7、x1x2+yy1=0. 又=(-x2,y),=(-x1,y1). ·=(-x1)×(-x2)+y×y1=x1x2+yy1=0. ∴⊥,CP是AB边上的高. 故三角形的三条高线交于一点.3eud教育网http://www.3edu.net教学资源集散地。可能是最大的免费教育资源网!3eud教育网http://www.3edu.net50多万教学资源,完全免费,无须注册,天天更新! (五)作业.习题5.71,2,3,4,5. 3eud教育网http://www.3edu.net教学资源集散地。可
8、能是最大的免费教育资源网!
此文档下载收益归作者所有