欢迎来到天天文库
浏览记录
ID:28679003
大小:452.50 KB
页数:19页
时间:2018-12-12
《计量经济学的的复习要点1》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、实用标准文档计量经济学复习要点参考教材:伍德里奇《计量经济学导论》第1章绪论数据类型:截面、时间序列、面板用数据度量因果效应,其他条件不变的概念习题:C1、C2第2章简单线性回归回归分析的基本概念,常用术语现代意义的回归是一个被解释变量对若干个解释变量依存关系的研究,回归的实质是由固定的解释变量去估计被解释变量的平均值。简单线性回归模型是只有一个解释变量的线性回归模型。回归中的四个重要概念1.总体回归模型(PopulationRegressionModel,PRM)--代表了总体变量间的真实关系。2.总体回归函数(PopulationRegressionFunctio
2、n,PRF)--代表了总体变量间的依存规律。3.样本回归函数(SampleRegressionFunction,SRF)--代表了样本显示的变量关系。4.样本回归模型(SampleRegressionModel,SRM)---代表了样本显示的变量依存规律。总体回归模型与样本回归模型的主要区别是:①描述的对象不同。总体回归模型描述总体中变量y与x的相互关系,而样本回归模型描述所关的样本中变量y与x的相互关系。②建立模型的依据不同。总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的。③模型性质不同。总体回归模型不是随机模型,而样本回归模型是一个
3、随机模型,它随样本的改变而改变。总体回归模型与样本回归模型的联系是:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。线性回归的含义线性:被解释变量是关于参数的线性函数(可以不是解释变量的线性函数)线性回归模型的基本假设简单线性回归的基本假定:对模型和变量的假定、对随机扰动项u的假定(零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定)精彩文案实用标准文档普通最小二乘法(原理、推导)最小二乘法估计参数的原则是以“残差平方和最小”。Minà:,OLS的代数性质拟合优度R2离差平方和的分解:TSS=ES
4、S+RSS“拟合优度”是模型对样本数据的拟合程度。检验方法是构造一个可以表征拟合程度的指标——判定系数又称决定系数。(1),表示回归平方和与总离差平方和之比;反映了样本回归线对样本观测值拟合优劣程度的一种描述;(2);(3)回归模型中所包含的解释变量越多,越大!改变度量单位对OLS统计量的影响函数形式(对数、半对数模型系数的解释)(1):X变化一个单位Y的变化(2):X变化1%,Y变化%,表示弹性。(3):X变化一个单位,Y变化百分之100(4):X变化1%,Y变化%。OLS无偏性,无偏性的证明OLS估计量的抽样方差误差方差的估计OLS估计量的性质(1)线性:是指参数
5、估计值和分别为观测值的线性组合。(2)无偏性:是指和的期望值分别是总体参数和。(3)最优性(最小方差性):是指最小二乘估计量和精彩文案实用标准文档在在各种线性无偏估计中,具有最小方差。高斯-马尔可夫定理OLS参数估计量的概率分布OLS随机误差项μ的方差σ2的估计简单回归的高斯马尔科夫假定对零条件均值的理解习题:4、5、6;C2、C3、C4第3章多元回归分析:估计1、变量系数的解释(剔除、控制其他因素的影响)对斜率系数的解释:在控制其他解释变量(X2)不变的条件下,X1变化一个单位对Y的影响;或者,在剔除了其他解释变量的影响之后,X1的变化对Y的单独影响!2、多元线性回
6、归模型中对随机扰动项u的假定,除了零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定以外,还要求满足无多重共线性假定。3、多元线性回归模型参数的最小二乘估计式;参数估计式的分布性质及期望、方差和标准误差;在基本假定满足的条件下,多元线性回归模型最小二乘估计式是最佳线性无偏估计式。最小二乘法(OLS)公式:估计的回归模型:的方差协方差矩阵:残差的方差:精彩文案实用标准文档估计的方差协方差矩阵是:拟合优度遗漏变量偏误多重共线性多重共线性的概念多重共线性的后果多重共线性的检验多重共线性的处理习题:1、2、6、7、8、10;C2、C5、C6第4章多
7、元回归分析:推断经典线性模型假定正态抽样分布变量显著性检验,t检验检验β值的其他假设P值实际显著性与统计显著性检验参数的一个线性组合假设多个线性约束的检验:F检验理解排除性约束报告回归结果习题:1、2、3、4、6、7、10、11;C3、C5、C8第6章多元回归分析:专题测度单位对OLS统计量的影响进一步理解对数模型二次式的模型交互项的模型精彩文案实用标准文档拟合优度修正可决系数的作用和方法。习题:1、3、4、7;C2、C3、C5、C9、C12第7章虚拟变量虚拟变量的定义如何引入虚拟变量:如果一个变量分成N组,引入该变量的虚拟变量形式是只能放入N-1个
此文档下载收益归作者所有