2013高考夯实基础之直线与平面的位置关系.doc

2013高考夯实基础之直线与平面的位置关系.doc

ID:28661676

大小:187.00 KB

页数:4页

时间:2018-12-12

2013高考夯实基础之直线与平面的位置关系.doc_第1页
2013高考夯实基础之直线与平面的位置关系.doc_第2页
2013高考夯实基础之直线与平面的位置关系.doc_第3页
2013高考夯实基础之直线与平面的位置关系.doc_第4页
资源描述:

《2013高考夯实基础之直线与平面的位置关系.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、精品文档直线与平面的位置关系空间点、直线、平面之间的位置关系2.1.11平面含义:平面是无限延展的2平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。3三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为LA·αA∈LB∈L=>Lα[来源:学。科。网Z。

2、X。X。K]A∈αB∈α公理1作用:判断直线是否在平面内C·B·A·α(2)公理2:过不在一条直线上的三点,有且只有一个平面。符号表示为:A、B、C三点不共线=>有且只有一个平面α,使A∈α、B∈α、C∈α。公理2作用:确定一个平面的依据。[来源:学_科_网](3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。P·αLβ符号表示为:P∈α∩β=>α∩β=L,且P∈L公理3作用:判定两个平面是否相交的依据空间中直线与直线之间的位置关系1空间的两条直线有如下三种关系:共面直线相交直线:同一

3、平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。2公理4:平行于同一条直线的两条直线互相平行。符号表示为:设a、b、c是三条直线=>a∥ca∥bc∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。公理4作用:判断空间两条直线平行的依据。3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4注意点:①a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为简便,点O一般取在两直线中的一条上;②两条异面直线所成的角

4、θ∈(0,);③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;精品文档④两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。[来源:Zxxk.Com]空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内——有无数个公共点(2)直线与平面相交——有且只有一个公共点(3)直线在平面平行——没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα来表示aαa∩α=Aa∥α直线、平面平行

5、的判定及其性质直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。简记为:线线平行,则线面平行。符号表示:aαbβ=>a∥αa∥b平面与平面平行的判定1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。符号表示:aβbβa∩b=Pβ∥αa∥αb∥α2、判断两平面平行的方法有三种:(1)用定义;(2)判定定理;(3)垂直于同一条直线的两个平面平行。直线与平面、平面与平面平行的性质1、定理:一条直线与一个平面平行,则过这条直线的任

6、一平面与此平面的交线与该直线平行。简记为:线面平行则线线平行。符号表示:精品文档a∥αaβa∥bα∩β=b作用:利用该定理可解决直线间的平行问题。2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。符号表示:α∥β[来源:学科网]α∩γ=aa∥bβ∩γ=b作用:可以由平面与平面平行得出直线与直线平行2.3直线、平面垂直的判定及其性质直线与平面垂直的判定1、定义如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。如图,直线与平面

7、垂直时,它们唯一公共点P叫做垂足。Lpα2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。平面与平面垂直的判定[来源:学。科。网Z。X。X。K]1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形A梭lβB  α2、二面角的记法:二面角α-l-β或α-AB-β3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。直线与平面、平面与平面

8、垂直的性质精品文档1、定理:垂直于同一个平面的两条直线平行。2性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。