菲尔兹数学奖故事

菲尔兹数学奖故事

ID:28646417

大小:60.00 KB

页数:10页

时间:2018-12-12

菲尔兹数学奖故事_第1页
菲尔兹数学奖故事_第2页
菲尔兹数学奖故事_第3页
菲尔兹数学奖故事_第4页
菲尔兹数学奖故事_第5页
资源描述:

《菲尔兹数学奖故事》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、-菲尔兹数学奖的故事罗朗·施瓦尔兹如果说1936年的两位数学家是因古典分析而获得菲尔兹奖的话,那么施瓦尔兹则可以说是以现代分析而获奖的。他的主要贡献是创立了广义函数(分布)论,这个理论已成为泛函分析的重要分支,而且也成为研究现代数学尤其是分析数学的重要工具。罗朗·施瓦尔兹于1915年出生于巴黎。在中学时期,他热衷于学习拉丁文和希腊文,同时也爱好数学、物理学、化学与生物学。尽管他后来研究的理论十分抽象,却始终不同于那些专钻牛角尖的数学家,他们除了眼前一点点东西之外,什么也不知道。他对于物理等“实际”问题始终怀有莫大兴

2、趣,为此,他年纪轻轻就已下定决心:把他所知道的数学理论做成一个融汇贯通的体系,或者把已知的理论进行系统的整理。这一方面当然是为了追求数学的美,更主要的是为应用创造有用的工具。这个想法的确预示了他后来的成就,广义函数论正是这种思想的集中体现。 1934年,他考上了万人竟试的高等师范学校。他在学校中学习了当时法国老一辈数学家所擅长的分析理论,像勒贝格积分、单复变函数、偏微分方程、微分几何学等课程。虽然这些老古董仍处于统治地位,但是变革的新风已不断地吹了进来。1935年,高等师范学校一批年轻的毕业生结成了布尔巴基学派,标

3、榜新数学向旧数学发起冲击。当时他所接触的泛函分析主要来自勒瑞。施瓦尔兹看到,泛函分析正在改变着整个分析的面貌。正在这个时候,他碰到了他未来的岳父保尔·列维。列维是一位伟大的数学家,他不像其他法国数学家那样受过正规训练,走着按步就班的学术道路,他是自修出身的。他搞的数学也远远偏离当时时髦的函数论,他是现代概率论的主要奠基人之一。在列维的影响下,施瓦尔兹写的第一篇论文就是关于概率论方面的。虽然以后他受布尔巴基学派的影响转向其他方面,但在他整个工作中仍然留下了这些最初培养的印记。1937年,他从高等师范学校毕业,取得了教

4、师资格。这时,希特勒的铁蹄就要踏上欧洲,年轻人都去服兵役。刚刚毕业的施瓦尔兹在兵营里当了三年兵。1940年6月希特勒长驱直入,大学跟着政府纷纷南迁,斯特拉斯堡再度落入德国人的手中。布尔巴基学派许多成员先后跑到法国中部克莱孟—弗兰避难,小卡当、魏伊、丢东涅、德国尔萨特、埃瑞斯曼都来了,可以说是布尔巴基学派的大集中。施瓦尔兹也来到这里,同布尔巴基诸人的接触大大改变了他的学术道路。使他接触了一套一套的新概念、新理论。他懂得抽象代数学、拓扑学、泛函分析这些“新玩意儿”正是他今后所需要的工具。这时,施瓦尔兹进入刚刚成立的法国

5、国家科学研究中心任助手,开始写关于指数和的博士论文,可是他用的是泛函分析新方法。这都是布尔巴基学派的影响,连题目也是丢东涅在泛函分析课上提出来的。1943年他取得博士学位。1944年到格林诺布当讲师。1945年以后,转到布尔巴基学派的中心南锡,后来升任南锡大学教授。这时他开始系统地建立广义函数理论。早在伽利略时代,数学中就开始引进变量的概念,从而使数学由常量的时代进入变量的时代。变量相互依存的关系称为函数,随着变量数学特别是分析数学的发展,函数概念也不断地发展变化。这正如数的概念的发展变化一样,完全来自数学发展的需

6、要。17世纪微积分发展时,伴随着许多初等函数的研究;18世纪尤其是19世纪偏微分方程的发展,出现了许多特殊函数;于是要求一般的函数概念。德国数学家狄里赫利提出一般的函数概念之后,出现了许许多多病态的函数,比如不可微的连续函数等等。开始,这些病态函数只不过是数学家的创造,而到20世纪,物理学中也用到这种函数了。量子力学中的狄拉克δ函数就是一例。所谓δ函数在0处取值∞,在其他各点取值为0,而由—∞到∞积分又等于1。这是一种连数学家也不承认的“怪”函数。施瓦尔兹在大学中已经考虑过如何把函数的概念加以推广。使之可容纳像δ.

7、---函数这类的函数。但是,他当时学的那一套经典理论是根本达不到这个目的的。现在他有了新工具,建立新的理论的希望更大了。1944年他在格林诺布一个人研究弗雷歇空间的对偶理论,这使他在1945年初几乎很快地就“发现”他所需要的广义函数。1945到1946年他发表了四篇广义函数的论文并在法兰西学院的讲课中加以讲授。在他“发现”广义函数之前,他并不知道许多数学家已经有许多具体的广义函数概念了,有的概念甚至可以追溯到19世纪30年代。不过,施瓦尔兹的功绩在于建立一个完整的体系,而这点是其他数学家没有做到的。而现代的几乎所有

8、应用都建筑在这个系统之上。这种问题使人想到微积分的发明。丢东涅说,施瓦尔兹对广义函数论所起的作用正像牛顿和莱布尼兹在微积分历史上的作用一样。牛顿和莱布尼兹并不像一般人所认为的那样“发明”了微积分,早在他们还是小学生时,许多人就已经运用微积分的方法了。他们的贡献在于把微积分的概念和算法系统化,使之成为我们现在非常熟悉的一种强有力的多面手式的工具。同样,施瓦尔兹

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。