埃博拉病毒的传播预测与控制美赛

埃博拉病毒的传播预测与控制美赛

ID:28580982

大小:1.05 MB

页数:26页

时间:2018-12-11

埃博拉病毒的传播预测与控制美赛_第1页
埃博拉病毒的传播预测与控制美赛_第2页
埃博拉病毒的传播预测与控制美赛_第3页
埃博拉病毒的传播预测与控制美赛_第4页
埃博拉病毒的传播预测与控制美赛_第5页
资源描述:

《埃博拉病毒的传播预测与控制美赛》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、Team#41029page26of26埃博拉病毒的传播预测与控制摘要2014年非洲爆发了历史上最为严重的病毒疫情--埃博拉。据科学研究报道,这个病毒一旦感染人体,将有着高达90%以上的死亡率,这是一种世上最厉害的感染病毒(生物安全等级为4级),如何消灭埃博拉成为当前的首要任务。当然,疾病的传播、患病人口的预测、药物的生产和运输,都是消灭埃博拉必须考虑的因素。根据病毒传播率、感染者人数的预测、药物的合理分配和隔离人数的比重等因素,本文运用随机微分方程、产销平衡和最优控制三种算法分别建立了随机微分方程模型、线性规划模型和最优隔离控制模型。这三个模型分别解决了埃博拉病毒的传播规律、感染者人数的预

2、测问题、药物的运输问题和以隔离控制为决定性作用因素的优化问题。针对模型一:将环境因素作为随机变量,结合病毒传播率,本文建立了随机微分方程模型,对以后10个月的患病人口总数进行了预测。利用数值解方法,对埃博拉病毒感染者人数进行预测,并通过仿真过程验证了疾病传播率的一个临界值,得出能使埃博拉传播速度降低直至消亡的一个条件。针对模型二:假设几内亚、利比里亚和塞拉利昂为需求地,美国、中国、日本、俄罗斯、法国以及瑞士为药物生产地。利用产销平衡原理,建立了时间优化模型,求得产地与需求地之间的最短运输时间为15.8小时。针对模型三:本模型基于传染病模型,利用极值原理给出了最优控制的设计方案,通过仿真,验证

3、了最优控制方案的优越性。同时,由协态方程得到当系统控制变量为0.50时,隔离效果最佳,也证明了隔离是控制疾病继续传播最有效的控制措施。本文三个模型均使用的官方数据,而且内容上层层优化,互相补充,使文章所述更为具体,更为实用,为埃博拉病毒问题的解决提供了一份可靠地,可行的,可依赖的数学模型。关键词:埃博拉病毒预测随机微分方程优化问题最优隔离控制Team#41029page26of261.问题重述—不用翻译1995年5月14日,扎伊尔发现罕见传染病埃博拉。2014年,埃博拉病毒首次爆发就夺走了近300人的生命,2014年再度爆发,大约4000人命丧黄泉。现在世界医学组织已经宣布:他们研究的新药物

4、可以阻止埃博拉病毒,并非晚期病人。本文疾病的传播、所需药物数量、可行的运输系统、运送的地点、生产疫苗或药物的速度和其他起决定性作用的因素考虑,建立一个符合实际的实用模型,可以达到优化消灭埃博拉或减小当前压力的目的。除了为此次比赛建立的模型解决方法外,为世界医学组织准备一份1-2页非技术信函,以用于他们的宣告。2.问题分析本文关于埃博拉病毒的传播、患病人数的预测、所需药物数量、可行的运输系统、疫苗的预防和药物的治疗等几个方面展开讨论和研究。模型一主要解决疾病的传播和患病人口预测问题。由于人口密度、周围是否有患病人群、生活环境等因素的随机性,所以将其视为随机变量。然后本文将病毒传播率作为一个高斯

5、白噪声过程带入常微分方程,得到关于埃博拉病毒传播的随机微分方程。此时不考虑人口的出生率、死亡率和人口的出入境情况,本文根据官方数据,得到2014年3月22号至今的感染者人数,从而得到一个疾病的传播率,进而预测未来10个月的感染者的总数。模型二主要解决药物的运输时间与成本的问题。由于几内亚、利比里亚和塞拉利昂这三个国家患病人数最多,所以选择这三个国家作为需求地。现在具备疫苗或药物生产能力的国家:美国、中国、日本、俄国、法国和瑞士。本文选择这六个国家作为产地。本模型只考虑在生产地和需求地之间的药物运输。首先保证各国所使用的运输机为同款运输机,在运输过程中,速度均为同等速度。接下来,本文将产销平衡

6、模型中的成本替换成运输所用时间,这样成本最低变成时间最短。然后结合模型一中的患病人口预测结果,再加上每个病人对应药量的比例系数,则计算出任意时刻所需要的药物总量。在满足各需求地需求量的前提下,本文再利用线性规划模型得到最优调运方案,即时间优化模型。模型三在模型二的基础上,分析其他可以消灭埃博拉的决定性因素。本文使用最优隔离控制法,把易感染者、染病者、治愈者、隔离者以及总人口数作为初始值代入目标函数,则会存在一个最优控制因素,再将其对应的状态解代入协态方程,得到最优控制因素——隔离的确切最优解,再通过数值仿真完成对本文模型的最后优化。3随机微分传播模型根据提供的官方数据得知,目前感染者人数已达

7、1.3万人,集中分布在几内亚、利比里亚和塞拉利昂三个国家。本文针对这三个国家的患病情况,建立埃博拉病毒的随机微分模型来描述病毒的传播过程,分析并预测未来感染人数的变化规律。3.1符号说明符号符号说明Team#41029page26of26感染者人数占总人口比例埃博拉传播过程中人与人之间的接触率由于得了患埃博拉所造成的死亡率增加值埃博拉病毒的传播率平均传播率环境干扰强度布朗运动3.2模型假设l假设埃博拉病毒在研

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。