欢迎来到天天文库
浏览记录
ID:28534700
大小:1.00 MB
页数:40页
时间:2018-12-10
《历年中学数学竞赛试题精选》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、.初中数学竞赛专项训练1、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。 A.111B.1000C.1001D.1111解:依题意设六位数为,则=a×105+b×104+c×103+a×102+b×10+c=a×102(103+1)+b×10(103+1)+c(103+1)=(a×103+b×10+c)(103+1)=1001(a×103+b×10+c),而a×103+b×10+c是整数,所以能被1001整除。故选C方法二:代入法2、若,则S的整数部分是____________________
2、解:因1981、1982……2001均大于1980,所以,又1980、1981……2000均小于2001,所以,从而知S的整数部分为90。3、设有编号为1、2、3……100的100盏电灯,各有接线开关控制着,开始时,它们都是关闭状态,现有100个学生,第1个学生进来时,凡号码是1的倍数的开关拉了一下,接着第二个学生进来,由号码是2的倍数的开关拉一下,第n个(n≤100)学生进来,凡号码是n的倍数的开关拉一下,如此下去,最后一个学生进来,把编号能被100整除的电灯上的开关拉了一下,这样做过之后,请问哪些灯还亮着。解:首先,电灯编号有几个正约数
3、,它的开关就会被拉几次,由于一开始电灯是关的,所以只有那些被拉过奇数次的灯才是亮的,因为只有平方数才有奇数个约数,所以那些编号为1、22、32、42、52、62、72、82、92、102共10盏灯是亮的。资料.4、某商店经销一批衬衣,进价为每件m元,零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是( ) A.m(1+a%)(1-b%)元B.m·a%(1-b%)元 C.m(1+a%)b%元D.m(1+a%b%)元解:根据题意,这批衬衣的零售价为每件m(1+a%)元,因调整后的零售价为原
4、零售价的b%,所以调价后每件衬衣的零售价为m(1+a%)b%元。应选C5、如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为( ) A.0B.1或-1C.2或-2D.0或-2解:由已知,a,b,c为两正一负或两负一正。①当a,b,c为两正一负时:;②当a,b,c为两负一正时:由①②知所有可能的值为0。应选AcABCab6、在△ABC中,a、b、c分别为角A、B、C的对边,若∠B=60°,则的值为( ) A.B.C.1D.解:过A点作AD⊥CD于D,在Rt△BDA中,则于∠B=60°,所以DB=,AD=资料.。在Rt△ADC
5、中,DC2=AC2-AD2,所以有(a-)2=b2-C2,整理得a2+c2=b2+ac,从而有 应选C7、设a<b<0,a2+b2=4ab,则的值为( ) A.B.C.2D.3解:因为(a+b)2=6ab,(a-b)2=2ab,由于a
6、成本高p%,当该商品降价出售时,为了不亏损成本,售价的折扣(即降价的百分数)不得超过d%,则d可用p表示为_____解:设该商品的成本为a,则有a(1+p%)(1-d%)=a,解得11、已知实数z、y、z满足x+y=5及z2=xy+y-9,则x+2y+3z=_______________解:由已知条件知(x+1)+y=6,(x+1)·y=z2+9,所以x+1,y是t2-6t+z2+9=0的两个实根,方程有实数解,则△=(-6)2-4(z2+9)=-4z2≥0,从而知z=0,解方程得x+1=3,y=3。所以x+2y+3z=812.气象爱好者孔
7、宗明同学在x(x为正整数)天中观察到:①有7个是雨天;②有5个下午是晴天;③有6个上午是晴天;④当下午下雨时上午是晴天。则x等于( ) A.7B.8C.9D.10选C。设全天下雨a天,上午晴下午雨b天,上午雨下午晴c天,全天晴d天。由题可得关系式a=0①,b+d=6②,c+d=5③,a+b+c=7④,②+③-④得2d-a=4,即d=2,故b=4,c=3,于x=a+b+c+d=9。13、有编号为①、②、③、④的四条赛艇,其速度依次为每小时、、、千米,且满足>>>>0,其中,为河流的水流速度(千米/小时),它们在河流中进行追逐赛规则如下:(1
8、)四条艇在同一起跑线上,同时出发,①、②、③是逆流而上,④号艇顺流而下。(2)经过1小时,①、②、③同时掉头,追赶④号艇,谁先追上④号艇谁为冠军,问冠军为几号?解:出发1小时后,
此文档下载收益归作者所有