图形变换共顶点旋转.的知识精讲(2014-2015)

图形变换共顶点旋转.的知识精讲(2014-2015)

ID:28531853

大小:535.50 KB

页数:11页

时间:2018-12-10

图形变换共顶点旋转.的知识精讲(2014-2015)_第1页
图形变换共顶点旋转.的知识精讲(2014-2015)_第2页
图形变换共顶点旋转.的知识精讲(2014-2015)_第3页
图形变换共顶点旋转.的知识精讲(2014-2015)_第4页
图形变换共顶点旋转.的知识精讲(2014-2015)_第5页
资源描述:

《图形变换共顶点旋转.的知识精讲(2014-2015)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、实用标准文档共顶点旋转中考大纲中考内容中考要求ABC图形的旋转了解图形的旋转,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;会识别中心对称图形能按要求作出简单平面图形旋转后的图形,能依据旋转前、后的图形,指出旋转中心和旋转角能运用旋转的知识解决简单问题知识网络图知识精讲一、旋转1、定义把一个图形绕着某一点转动一个角度的图形变换叫做旋转,点叫做旋转中心,转动的角叫做旋转角,如果图形上的点经过旋转变为点,那么这两个点叫做这个旋转的的对应点.如下图.【注意】1、研究旋转问题应把握两个元素

2、:旋转中心与旋转角.2、每一组对应点所构成的旋转角相等.2、性质(1)旋转后的图形与原图形是全等的;(进而得到相等的线段、相等的角)精彩文案实用标准文档(2)旋转前后两个图形对应点到旋转中心的距离相等;(进而得到等腰三角形)(3)对应点与旋转中心所连线段的夹角都等于旋转角;(若特殊角则得到等边三角形、等腰直角三角形)3、作图的重要条件由旋转的性质可知,旋转作图必须具备两个重要条件(1)旋转中心(2)旋转方向及旋转角度.4、作图的基本步骤具体步骤分以下几步连:即连接图形中每一个关键点与旋转中心.转:即把连线按要求

3、绕旋转中心转过一定角度(作旋转角)截:即在角的另一边上截取关键点到旋转中心的距离,得到各点的对应点.连:即连接所得到的各点.二、中心对称1、中心对称的定义把一个图形绕着某一点旋转,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做中心对称点,这两个图形中的对应点叫做关于中心的对称点(如下图)【注意】1、图形成中心对称是旋转角为定角()的旋转问题,它是一种特殊的旋转,反映的是两个图形的一种特殊关系.2、中心对称阐明的是两个图形的特殊位置关系.2、中心对称的性质关于中心对称的两个图形

4、,对称点所连线段都经过对称中心,而且被对称中心所平分.关于中心对称的两个图形是全等图形.关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等.如果连接两个图形的对应点的线段都经过某一点,并且被这一点平分,那么这两个图形一定关于这一点成中心对称.3、中心对称图形把一个图形绕着某一点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.(如下图)精彩文案实用标准文档4、中心对称与中心对称图形的区别与联系中心对称是指两个图形的关系,中心对称图形是指具有某种性质的一个

5、图形.若把中心对称图形的两个部分分别看作两个图形,则他们成中心对称;若把中心对称的两个图形看作一个整体,则成为中心对称图形.5、关于原点对称的点的坐标特征两个点关于原点对称时,他们坐标符号相反,反过来,只要两个点的坐标符号相反,则两个点关于原点对称.6、中心对称图形与旋转对称图形的比较名称定义区别联系旋转对称图形如果一个图形绕着某一点旋转一定角度(小于周角)后能与原图形完全重合,那么这个图形叫做旋转对称图形旋转角度不一定是旋转对称图形只有旋转才是中心对称图形,而中心对称图形一定是旋转对称图形中心对称图形如果一个

6、图形绕某一点旋转后能与自身重合,那么这个图形叫做中心对称图形必须旋转7、中心对称图形与轴对称图形比较名称定义基本图形区别举例中心对称图形如果一个图形绕着某点旋转后能与自身重合,那么这个图形叫做中心对称图形绕某一点旋转线段、平行四边形、矩形、菱形、圆轴对称图形如果一个图形沿某一条直线翻折后,直线两旁的部分能够互相重合,那么这样的图形叫做轴对称图形沿某一条直线翻折(对折)线段、等腰三角形、矩形、菱形、正方形、圆三、共顶点旋转1、共顶点旋转三角形有出现一个公共的顶点,两个三角形可以通过旋转相互得到,这类题目需要找到两

7、个旋转三角形或者通过作出辅助线找到两个旋转三角形.精彩文案实用标准文档【注意】以上给出了各种图形连续变化图形,图中出现的两个阴影部分的三角形是全等三角形,此模型需要注意的是利用“全等三角形”的性质进行边与角的转化.证明的基本思想“SAS”.【例题】如图,等边三角形与等边共顶点于点.求证:.【答案】∵是等边三角形,∴,.∴,同理,.∴在与中,∴,∴.四、费马点与最值1、三线共点问题图形中出现有公共端点的相等线段,可考虑将含有相等线段的图形绕公共端点旋转两相等线段的夹角后与另一相等线段重合.2、与共用顶点,固定将绕

8、点旋转过程中的,会出现的最大值与最小值,如图.3、费马点的定义到三个定理的三条线段之和最小,夹角都为°.旋转与最短路程问题主要是利用旋转的性质转化为两点之间线段最短的问题,同时与旋转有关路程最短的问题,比较重要的就是费马点问题4、费马点的结论(1)平面内一点到△ABC三顶点的之和为,当点P为费马点时,距离之和最小.(2)三内角皆小于120°的三角形,分别以,,为边,向三角形外侧做正三角

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。