欢迎来到天天文库
浏览记录
ID:28257682
大小:350.50 KB
页数:7页
时间:2018-12-08
《常用混凝土受压应力_应变曲线的比较及应用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、word整理版常用混凝土受压应力—应变曲线的比较及应用摘要:为了对受弯截面进行弹塑性分析及其他研究,在对各种混凝土受压应力应变曲线研究的基础上,总结出了四种常用曲线,这些曲线已经被广泛应用。对四种常用曲线进行简介,并指出了它们的适用范围及优缺点。在进行受弯截面弹塑性分析时,介绍了运用四种常用曲线对其受力性能进行分析的计算模式,并且运用实际案例进行受弯截面弹塑性分析,方便工程师们参考和借鉴。关键词:混凝土;受压应力应变曲线;本构关系;受弯截面0引言混凝土受压应力—应变曲线是其最基本的本构关系,又是多轴本构模型的基础,在钢筋混凝土结构的非线件分析中,例如构件的截面刚度、截面极限应力分布、承载
2、力和延性、超静定结构的内力和全过程分析等过程中,它是不可或缺的物理方程,对计算结果的准确性起决定性作用。近年来,国内外学者对其进行了大量的研究及改进,已有数十条曲线表达式,其中部分具有代表性的表达式已经被各国规范采纳。常用的表达式包括我国《混凝土结构设计规范》(GB50010-2010)、CEB-FIPModelCode(1990)、清华过镇海以及美国学者Hognestad建议的混凝土受压应力应变关系,在已有研究的基础上,本文将对各个表达式在实际运用中的情况进行比较,并且通过实际算例运用这些表达式进行受弯截面弹塑性分析,从而为工程师们在实际应用时提供参考和借鉴。1常用混凝土受压应力—应变
3、曲线比较至今已有不少学者提出了多种混凝土受压应力应变曲线,常用的表达式采用两类,一类是采用上升段与下降段采用统一曲线的方程,一类是采用上升段与下降段不一样的方程。1.1中国规范我国《混凝土结构设计规范》(GB50010-2010)采用的模式为德国人Rüsch1960年提出的二次抛物线加水平直线,如图1-1所示。上升阶段的应力应变关系式为:(1-1)学习好帮手word整理版A点为二次抛物线的顶点,应力为,是压应力的最大值,A点的压应变为。下降阶段的关系式为:(1-2)B点为第二阶段末,其压应变为εu。过了B点,认为混凝土已破坏,不能再工作,故取εu为混凝土受压时的极限应变。1.1欧洲规范欧
4、洲规范CEB-FIPModelCode(1990)建议的应力应变关系为Sargin1971年提出的有理分式来表示,如图1-2所示,应力应变关系为:(1-3)(1-4)学习好帮手word整理版式中:εc1为相应于压应力峰值σ0的压应变εc1=-0.0022,εc1为从原点到压应力峰值点的割线模量,=/0.0022,为混凝土初始弹性模量;εu为混凝土极限压应变,其大小与、及εc1有关。1.3清华过镇海曲线清华大学的过镇海教授在1982年结合自己多年的研究成果提出了自己的混凝土受压应力-应变曲线表达式,如图1-3所示。第I阶段中,OA仍为二次抛物线,与德国人Rüsch提出的抛物线模式相同如下:
5、(1-1)第II阶段中,下降段AB用有理分式表示如下:(1-5)其中,,见下表:表1-1材料强度等级水泥标号/10-3普通混凝土C20~C303254250.40.81.401.60C404252.01.80陶粒混凝土CL254254.02.00水泥砂浆M30~M40325,4254.02.501.4美国Hognestad曲线学习好帮手word整理版美国人E.Hognestad在1951年提出的应力-应变全曲线方程分为上升段和下降段,上升段与德国人Rüsch所提出模型的上升段相同,但是下降段采用一条斜率为负的直线来模拟,如图1-4所示,上升段表达式如下:(1-1)下降段表达式为:(1-6
6、)其中:α=0.015;εu=0.038经过化简以后,表达式变为如下:(1-7)对于以上四种常见的混凝土单轴受压应力—应变曲线先将其优缺点进行总结,如下表:表1-2优点缺点中国规范(1)OA段表达式比较简单,又能反映应力—应变曲线上升段的特点;AB段则更为简单。(2)该模型能在许多情况下得到符合实际情况的结果,即适应范围广,计算结果与实际接近程度好。AB段不能反映应力应变曲线下降段的特点。欧洲规范上升、下降段用同一个式子表达,便于程序处理。比较复杂、难记。清华过镇海曲线学习好帮手word整理版(1)该模式的下降段不是直线而是一条曲线,与实测资料比较相符。(2)上升、下降变化处连续。上升、
7、下降段用两个分段函数表达,且下降段式子较复杂。美国Hognestad曲线该曲线在一定程度上能反映下降段的特点,公式简单。曲线用两个不同的公式表示,且顶点是尖点,导数不存在。2计算原理混凝土受压应力-应变曲线最常见的用途就是进行受弯截面弹塑性分析,即在外加荷载作用下分析混凝土的最大弯矩,最大刚度等问题。在进行计算之前应假定混凝土受弯构件满足平截面假定,不考虑混凝土的抗拉强度,以及材料应力应变物理关系。2.1基本方程(1)平衡条件(2-
此文档下载收益归作者所有