因式分解的常用方法[目前最牛最全的教学案]

因式分解的常用方法[目前最牛最全的教学案]

ID:28216176

大小:571.50 KB

页数:24页

时间:2018-12-08

因式分解的常用方法[目前最牛最全的教学案]_第1页
因式分解的常用方法[目前最牛最全的教学案]_第2页
因式分解的常用方法[目前最牛最全的教学案]_第3页
因式分解的常用方法[目前最牛最全的教学案]_第4页
因式分解的常用方法[目前最牛最全的教学案]_第5页
资源描述:

《因式分解的常用方法[目前最牛最全的教学案]》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、完美格式整理版因式分解的常用方法第一部分:方法介绍  多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其

2、反向使用,即为因式分解中常用的公式,例如: (1)(a+b)(a-b)=a2-b2---------a2-b2=(a+b)(a-b); (2)(a±b)2=a2±2ab+b2———a2±2ab+b2=(a±b)2; (3)(a+b)(a2-ab+b2)=a3+b3------a3+b3=(a+b)(a2-ab+b2); (4)(a-b)(a2+ab+b2)=a3-b3------a3-b3=(a-b)(a2+ab+b2).下面再补充两个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+

3、c2-ab-bc-ca);三、分组分解法.(一)分组后能直接提公因式例1、分解因式:分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。解:原式==每组之间还有公因式!=例2、分解因式:解法一:第一、二项为一组;解法二:第一、四项为一组;第三、四项为一组。第二、三项为一组。解:原式=原式=====练习:分解因式1、2、(二)分组后能直接运用公式例3、分解因式:分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因

4、式,但提完后就能继续分解,所以只能另外分组。例4、分解因式:解:原式=解:原式=====学习好帮手完美格式整理版练习:分解因式3、4、综合练习:(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)四、十字相乘法.(一)二次项系数为1的二次三项式学习好帮手完美格式整理版直接利用公式——进行分解。特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。思考:十字相乘有什么基本规律?例.已知0<≤5,且为整数,若能用十字相乘法分解因式,求符合条件的.解析:凡是能十字相乘的二次三项式ax2+bx+c,都要求>0而且是一个完全平方数。于是为

5、完全平方数,例5、分解因式:分析:将6分成两个数相乘,且这两个数的和要等于5。由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。12解:=13=1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。例6、分解因式:解:原式=1-1=1-6(-1)+(-6)=-7练习5、分解因式(1)(2)(3)练习6、分解因式(1)(2)(3)(二)二次项系数不为1的二次三项式——条件:(1)(2)(3)分解结果:=例7、分解因式:分析:1-23-5(-6)+(-5)=-11解

6、:=练习7、分解因式:(1)(2)学习好帮手完美格式整理版(3)(4)(三)二次项系数为1的齐次多项式例8、分解因式:分析:将看成常数,把原多项式看成关于的二次三项式,利用十字相乘法进行分解。18b1-16b8b+(-16b)=-8b解:==练习8、分解因式(1)(2)(3)(四)二次项系数不为1的齐次多项式例9、例10、1-2y把看作一个整体1-12-3y1-2(-3y)+(-4y)=-7y(-1)+(-2)=-3解:原式=解:原式=练习9、分解因式:(1)(2)综合练习10、(1)(2)(3)(4)(5)(6)学习好帮手完美格式整理版(7)(8)(9)(10)五、换元法。例

7、13、分解因式(1)(2)解:(1)设2005=,则原式===(2)型如的多项式,分解因式时可以把四个因式两两分组相乘。原式=设,则∴原式====练习13、分解因式(1)(2)六、添项、拆项、配方法。例15、分解因式(1)解法1——拆项。解法2——添项。原式=原式=========练习15、分解因式(2)(3)4)学习好帮手完美格式整理版第二部分:习题大全经典一:一、填空题1.把一个多项式化成几个整式的_______的形式,叫做把这个多项式分解因式。2分解因式:m3-4m=.3.分解因式:x

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。