超级电容组充电解决大电容充电方案.doc

超级电容组充电解决大电容充电方案.doc

ID:28148133

大小:319.00 KB

页数:12页

时间:2018-12-08

超级电容组充电解决大电容充电方案.doc_第1页
超级电容组充电解决大电容充电方案.doc_第2页
超级电容组充电解决大电容充电方案.doc_第3页
超级电容组充电解决大电容充电方案.doc_第4页
超级电容组充电解决大电容充电方案.doc_第5页
资源描述:

《超级电容组充电解决大电容充电方案.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、超级电容组充电解决大电容充电方案  超级电容(Supercapacitor[SC]或ultracapacitor)亦称双电层电容(electricdouble-layercapacitor),目前越来越广泛地用于各种电源管理系统。在汽车应用(如具有再生制动功能的起停系统)中,超级电容能够提供使起动器啮合所需的能量,以重启燃烧发动机,并接收在制动期间回收的动能。超级电容的优势在于其充放电次数显着多于传统铅酸电池,同时能够更迅速地吸收能量而不减少其预期寿命。这些特点还使超级电容对工业后备电源系统、快速充电无绳电动工具和远程传感器具有吸引力,

2、因为对这些应用来说,频繁更换电池是不切实际的。  本文讨论了有关为这些大电容充电的挑战,并向电源系统设计工程师介绍了如何评估和选择适合后备能量存储应用的最佳系统配置。文中介绍了一种超级电容充电器解决方案范例,并提供了波形和详细解释。  系统详述  许多系统配置都使用超级电容组作为后备能量存储组件。一开始,设计工程师需要确定其能量存储配置目标,然后决定可用多大电压来存储能量。解决方案选择取决于负载的功率和电压要求,以及超级电容的能量和电压能力。在确定了最佳解决方案后,还必须对整体性能与成本进行平衡。  图1显示了一种高效率解决方案的框图,

3、其中的负载是需要稳定输入电压(3.3V、5V、12V等)的器件。48V主电源为正常工作的开关稳压器2(SW2)供电,同时通过开关稳压器1(SW1)为超级电容组充电,使其电压达到25V。当主电源断开时,超级电容组向SW2供电,以维持负载的连续运行。    图1.一种使用超级电容组的电池后备系统的框图  选定超级电容后,系统工程师还必须选择为超级电容充电的目标电压,其根据是超级电容的定额曲线。大多数超级电容单元的额定电压范围为室温下2.5V-3.3V,此额定值在更高温度时下降,随之带来更长的预期寿命。通常,充电目标电压设置值应低于最大额定电

4、压,以延长超级电容的工作寿命。  接下来需要选择超级电容组的预期电压和SW2拓扑。超级电容组配置可为并联、串联或者并联的串联电容串组合。因为单元电容电压额定值通常低于3.3V,且负载常常需要相等或更高的供电电压,所以针对电容单元配置和SW2的选项是,使用一个电容单元与一个升压转换器,或串联的多个电容单元与一个降压或降压-升压稳压器。若使用升压配置,我们必须确保在超级电容放电时,电压不会下降至低于SW2的最小工作输入电压。该电压下降可能多达超级电容充电电压的一半之多,为此,我们举一个由串联超级电容组合和一个简单降压稳压器(SW1)组成的超

5、级电容组的例子。然后,如果能量要求需要的话,将并联多个串联电容串。  如果选择超级电容的串联组合,则必须根据电容串顶端的最大预期电压来选择所用电容单元的数目。更多的串联电容意味着超级电容串的电容值更小而电压更高。例如,假设选择使用两串由四个2.7V10F电容组成的电容串和由八个相同电容(串联)组成的一个电容串。虽然两种配置可存储总电荷和能量是相同的,但电容串的可用电压范围使单个串联串具有优势。例如,如果有一个需要5V偏压的负载,则SW2需要的电压为6V左右(考虑到其最大占空比和其他压差因素)。  ●电容中的能量W=CV2/2,可用能量W

6、=C/2(Vcharge2-Vdicharge2)  ●对于每串4个电容的两个电容串,可用能量W=2*[(10F/4)/2*((2.7V*4)2-6V2)]=201.6J  ●对于包含8个电容(串联)的单个电容串,可用能量W=1*[(10F/8)/2*((2.7V*8)2-6V2)]=269.1J  因为两个电容组可存储相同的总能量,所以电压较低的电容串的充电浪费/不可用百分比更大。在本例中,优先选择更高的电容串电压,以充分利用超级电容。  第三个系统挑战来自如何为超级电容组充电。一开始,当超级电容电压为0时,由于高电容值,SW1需要在

7、类似输出短路的条件下工作相当长时间。常规SW1可能陷于打嗝模式而无法为超级电容充电。为了保护超级电容和SW1,在充电阶段开始时需要附加的电流限制功能。一种令人满意的解决方案是让SW1在几乎无输出电压的条件下提供加长时间的连续充电电流。  为超级电容充电有许多方法。恒定电流/恒定电压(CICV)是常用的首选方法,如图2(CIVE曲线)所示。在充电周期开始时,充电器件(SW1)在恒定电流模式下工作,向超级电容提供恒定电流,使得其电压呈线性增加。在超级电容充电至目标电压时,恒定电压回路激活并准确地控制超级电容充电电平,使之保持恒定,以避免过度

8、充电。同样,该优先解决方案也提出了对电源管理功能的要求,需要在设计中加以考虑。    图2.CICV超级电容充电控制  再以图1为例,在48V主电源、25V超级电容组电压以及3.3V、5V、12V等负载电压

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。