欢迎来到天天文库
浏览记录
ID:28103174
大小:69.50 KB
页数:6页
时间:2018-12-08
《毫米波技术及芯片详解.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、毫米波技术及芯片详解 由于毫米波器件的成本较高,之前主要应用于军事。然而随着高速宽带无线通信、汽车辅助驾驶、安检、医学检测等应用领域的快速发展,近年来毫米波在民用领域也得到了广泛的研究和应用。目前,6GHz以下的黄金通信频段,已经很难得到较宽的连续频谱,严重制约了通信产业的发展。相比之下,毫米波频段却仍有大量潜在的未被充分利用的频谱资源。因此,毫米波成为第5代移动通信的研究热点。2015年在WRC2015大会上确定了第5代移动通信研究备选频段:24.25-27.5GHz、37-40.5GHz、42.5-43.5GHz、45.5-47GHz、47.2-50.
2、2GHz、50.4-52.6GHz、66-76GHz和81-86GHz,其中31.8-33.4GHz、40.5-42.5GHz和47-47.2GHz在满足特定使用条件下允许作为增选频段。各种毫米波的器件、芯片以及应用都在如火如荼的开发着。相对于微波频段,毫米波有其自身的特点。首先,毫米波具有更短的工作波长,可以有效减小器件及系统的尺寸;其次,毫米波有着丰富的频谱资源,可以胜任未来超高速通信的需求。此外,由于波长短,毫米波用在雷达、成像等方面有着更高的分辨率。到目前为止,人们对毫米波已开展了大量的研究,各种毫米波系统已得到广泛的应用。随着第5代移动通信、汽车自
3、动驾驶、安检等民用技术的快速发展,毫米波将被广泛应用于人们日常生活的方方面面。 毫米波技术方面,结合目前一些热门的毫米波频段的系统应用,如毫米波通信、毫米波成像以及毫米波雷达等,对毫米波芯片发展做了重点介绍。1、毫米波芯片 传统的毫米波单片集成电路主要采用化合物半导体工艺,如砷化镓(GaAs)、磷化铟(InP)等,其在毫米波频段具有良好的性能,是该频段的主流集成电路工艺。另一方面,近十几年来硅基(CMOS、SiGe等)毫米波亚毫米波集成电路也取得了巨大进展。此外,基于氮化镓(GaN)工艺的大功率高频器件也迅速拓展至毫米波频段。下面将分别进行介绍。
4、1.1GaAs和InP毫米波芯片 近十几年来,GaAs和InP工艺和器件得到了长足的进步。基于该类工艺的毫米波器件类型主要有高电子迁移率晶体管(HEMT)、改性高电子迁移率晶体管(mHEMT)和异质结双极性晶体管(HBT)等。目前GaAs、mHEMT、InP、HEMT和InPHBT的截止频率(ft)均超过500GHz,最大振荡频率(fmax)均超过1THz.2015年美国NorthropGrumman公司报道了工作于0.85THz的InPHEMT放大器,2013年美国Teledyne公司与加州理工大学喷气推进实验室报道了工作至0.67THz的InPHBT放
5、大器,2012年和2014年德国弗朗霍夫应用固体物理研究所报道了工作频率超过0.6THz的mHEMT放大器。 1.2GaN毫米波芯片 GaN作为第3代宽禁带化合物半导体,具有大的禁带宽度、高的电子迁移率和击穿场强等优点,器件功率密度是GaAs功率密度的5倍以上,可显著地提升输出功率,减小体积和成本。随着20世纪90年代GaN材料制备技术的逐渐成熟,GaN器件和电路已成为化合物半导体电路研制领域的热点方向,美国、日本、欧洲等国家将GaN作为微波毫米波器件和电路的发展重点。近十年来,GaN的低成本衬底材料碳化硅(SiC)也逐渐成熟,其晶格结构与GaN相匹配,
6、导热性好,大大加快了GaN器件和电路的发展。近年来GaN功率器件在毫米波领域飞速发展,日本Eudyna公司报道了0.15m栅长的器件,在30GHz功率输出密度达13.7W/mm.美国HRL报道了多款E波段、W波段与G波段的GaN基器件,W波段功率密度超过2W/mm,在180GHz上功率密度达到296mW/mm.国内在微波频段的GaN功率器件已基本成熟,到W波段的GaN功率器件也取得进展。南京电子器件研究所研制的Ka波段GaN功率MMIC在3436GHz频带内脉冲输出功率达到15W,附加效率30%,功率增益大于20dB。 1.3硅基毫米波芯片 硅基工艺传统
7、上以数字电路应用为主。随着深亚微米和纳米工艺的不断发展,硅基工艺特征尺寸不断减小,栅长的缩短弥补了电子迁移率的不足,从而使得晶体管的截止频率和最大振荡频率不断提高,这使得硅工艺在毫米波甚至太赫兹频段的应用成为可能。国际半导体蓝图协会(InternaTIonalTechnologyRoadmapforSemiconductors)预测到2030年CMOS工艺的特征尺寸将减小到5nm,而截止频率ft将超过700GHz.德国IHP研究所的SiGe工艺晶体管的截止频率ft和最大振荡频率fmax都已经分别达到了300GHz和500GHz,相应的硅基工艺电路工作频率可扩
8、展到200GHz以上。 由于硅工艺在成本和集成度方
此文档下载收益归作者所有