导数在的研究函数中应用

导数在的研究函数中应用

ID:28054627

大小:717.00 KB

页数:23页

时间:2018-12-08

导数在的研究函数中应用_第1页
导数在的研究函数中应用_第2页
导数在的研究函数中应用_第3页
导数在的研究函数中应用_第4页
导数在的研究函数中应用_第5页
资源描述:

《导数在的研究函数中应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、导数在研究函数中的应用           编稿;周尚达   审稿:张扬   责编:严春梅目标认知学习目标:  1.会从几何直观了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间   (多项式函数一般不超过三次).  2.了解函数在某点取得极值的必要条件(导数在极值点两端异号)和充分条件();会用   导数求函数的极大值、极小值(多项式函数一般不超过三次).  3.会求闭区间上函数的最大值、最小值(多项式函数一般不超过三次).重点:  利用导数判断函数的单调性;会求一些函数的极值与最值。难点:  函数极值与最值的区别与联系.利用导数在解决函数问题时有关

2、字母讨论的问题.学习策略:  ①理解导函数的符号与函数单调性之间的必然关系。  ②数形结合,体会函数极值与最值的含义。  ③紧紧抓住导函数为0的点,讨论函数的单调区间、极值和最值。知识要点梳理知识点一:函数的单调性(一)导数的符号与函数的单调性:  一般地,设函数在某个区间内有导数,则在这个区间上,  ①若,则在这个区间上为增函数;  ②若,则在这个区间上为减函数;  ③若恒有,则在这一区间上为常函数.  反之,若在某区间上单调递增,则在该区间上有恒成立(但不恒等于0);若在某区间上单调递减,则在该区间上有恒成立(但不恒等于0).  注意:  1.因为导数的几何意义是曲线切线

3、的斜率,故当在某区间上..,即切线斜率为正时,函数   在这个区间上为增函数;当在某区间上,即切线斜率为负时,函数在这个区   间上为减函数;即导函数的正负决定了原函数的增减。  2.若在某区间上有有限个点使,在其余点恒有,则仍为增函数(减函数的   情形完全类似)。即在某区间上,在这个区间上为增函数;   在这个区间上为减函数,但反之不成立。在某区间上为增函数在该区间;   在某区间上为减函数在该区间。在区间(a,b)内,(或)是在   区间(a,b)内单调递增(或减)的充分不必要条件!   例如:而f(x)在R上递增.  3.只有在某区间内恒有,这个函数在这个区间上才为常

4、数函数.  4.注意导函数图象与原函数图象间关系.(二)利用导数求函数单调性的基本步骤:  1.确定函数的定义域;  2.求导数;  3.在定义域内解不等式,解出相应的x的范围;当时,在相应区   间上为增函数;当时在相应区间上为减函数.   或者令,求出它在定义域内的一切实数根。把这些实数根和函数的间断点(即的无   定义点)的横坐标按从小到大的顺序排列起来,然后用这些点把函数..的定义区间分成若干个小   区间,判断在各个小区间内的符号。  4.写出的单调区间.  注意:  1.求函数单调区间时,要注意单调区间一定是函数定义域的子集。  2.求单调区间常常通过列表的方法进

5、行求解,使解题思路步骤更加清晰、明确。知识点二:函数的极值(一)函数的极值的定义  一般地,设函数在点及其附近有定义,  (1)若对于附近的所有点,都有,则是函数的一个极大值,    记作;  (2)若对附近的所有点,都有,则是函数的一个极小值,    记作.  极大值与极小值统称极值.  在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值.  注意:由函数的极值定义可知:  (1)在函数的极值定义中,一定要明确函数y=f(x)在x=x0及其附近有定义,否则无从比较.  (2)函数的极值是就函数在某一点附近的小区间而言的,是一个局部概念;在函数的整个定义域

6、内可    能有多个极值,也可能无极值.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大    或最小,并不意味着它在函数的整个的定义域内最大或最小.  (3)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值.极小值不一定是整    个定义区间上的最小值.  (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值    的点可能在区间的内部,也可能在区间的端点.(二)求函数极值的的基本步骤:  ①确定函数的定义域;  ②求导数;  ③求方程..的根;  ④检查在方程根左右的值的符号,如果左正右负,则f(x)在

7、这个根处取得极大值;如果左负右   正,则f(x)在这个根处取得极小值.(最好通过列表法)  注意:  ①可导函数的极值点一定是导函数为0的点,但导数为0的点不一定是极值点.即是可导函数   在点取得极值的必要非充分条件.例如函数y=x3,在x=0处,,但x=0不是函数的极   值点.  ②可导函数在点取得极值的充要条件是且在两侧,的符号相异。知识点三:函数的最值(一)函数的最大值与最小值定理  若函数在闭区间上连续,则在上必有最大值和最小值;在开区间内连续的函数不一定有最大值与最小值.如.  注意: 

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。