欢迎来到天天文库
浏览记录
ID:27749140
大小:87.00 KB
页数:3页
时间:2018-12-05
《广东省高中数学第三章导数及其应用3.2.1几个常用函数的导数教案新人教a版选修1-1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.2.1几个常用函数的导数教学目标:1.能够用导数的定义求几个常用函数的导数;2.利用公式解决简单的问题。教学重点和难点1.重点:推导几个常用函数的导数;2.难点:推导几个常用函数的导数。教学方法:自己动手用导数的定义求几个常用函数的导数,感知、理解、记忆。教学过程:一复习1、函数在一点处导数的定义;2、导数的几何意义;3、导函数的定义;4、求函数的导数的步骤。二新课例1.推导下列函数的导数(1)解:,1.求的导数。解:,。表示函数图象上每一点处的切线的斜率都为1.若表示路程关于时间的函数,则可以解释为某物体做瞬时速度为1的匀速运动。思考:(1).从求,,,的导数如何来判断这几个
2、函数递增的快慢?(2).函数增的快慢与什么有关?可以看出,当k>0时,导数越大,递增越快;当k<0时,导数越小,递减越快.32.求函数的导数。解:,。表示函数图象上每点(x,y)处的切线的斜率为2x,说明随着x的变化,切线的斜率也在变化:(1)当x<0时,随着x的增加,减少得越来越慢;(2)当x>0时,随着x的增加,增加得越来越快。3.求函数的导数。解:,思考:(1)如何求该曲线在点(1,1)处的切线方程?,所以其切线方程为。(2)改为点(3,3),结果如何?(3)把这个结论当做公式多好呀,,既方便,又减少了复杂的运算过程。三例题1.试求函数的导数。解:32.已知点P(-1,1),
3、点Q(2,4)是曲线上的两点,求与直线PQ平行的曲线的切线方程。解:,设切点为,则因为PQ的斜率又切线平行于PQ,所以,即,切点,所求直线方程为。四练习1.如果函数,则()A.5B.1C.0D.不存在2.曲线在点(0,1)的切线斜率是()A.-4B.0C.2D.不存在3.曲线在点处切线的倾斜角为()A.B.1C.D.答案:1.C2.B3.C五小结1.记熟几个常用函数的导数结论,并能熟练使用;2.在今后的求导运算中,只要不明确要求用定义证明,上述几个结论直接使用。六作业1.P85,A组12.求双曲线过点的切线方程。3
此文档下载收益归作者所有