高中数学第一章解三角形1.2应用举例1.2.1解决有关测量距离的问题教案新人教a版必修5

高中数学第一章解三角形1.2应用举例1.2.1解决有关测量距离的问题教案新人教a版必修5

ID:27748486

大小:355.00 KB

页数:8页

时间:2018-12-05

高中数学第一章解三角形1.2应用举例1.2.1解决有关测量距离的问题教案新人教a版必修5_第1页
高中数学第一章解三角形1.2应用举例1.2.1解决有关测量距离的问题教案新人教a版必修5_第2页
高中数学第一章解三角形1.2应用举例1.2.1解决有关测量距离的问题教案新人教a版必修5_第3页
高中数学第一章解三角形1.2应用举例1.2.1解决有关测量距离的问题教案新人教a版必修5_第4页
高中数学第一章解三角形1.2应用举例1.2.1解决有关测量距离的问题教案新人教a版必修5_第5页
资源描述:

《高中数学第一章解三角形1.2应用举例1.2.1解决有关测量距离的问题教案新人教a版必修5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.2.1 解决有关测量距离的问题项目内容课题1.2.1 解决有关测量距离的问题修改与创新教学目标一、知识与技能能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语,如:坡度、俯角、方向角、方位角等.二、过程与方法1.首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫.其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题.对于例2这样的开放性题目要鼓励学生

2、讨论,引导学生从多角度发现问题并进行适当的指点和矫正.2.通过解三角形的应用的学习,提高解决实际问题的能力.三、情感态度与价值观1.激发学生学习数学的兴趣,并体会数学的应用价值;2.通过解斜三角形在实际中的应用,要求学生体会具体问题可以转化为抽象的数学问题,以及数学知识在生产、生活实际中所发挥的重要作用.同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力.教学重、难点教学重点分析测量问题的实际情景,从而找到测量距离的方法.教学难点实际问题向数学问题转化思路的确定,即根据题意建立数学模型,画出示意图.教学多媒体课件8准备教学过程导入新课师前面引言第一章“解三角形

3、”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施.如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性.于是上面介绍的问题是用以前的方法所不能解决的.今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离.推进新课解决实际测量问题的过程一般

4、要充分认真理解题意,正确作出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解.[例题剖析]【例1】如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=51°,∠ACB=75°.求A、B两点的距离.(精确到0.1m)师(启发提问)1:△ABC中,根据已知的边和对应角,运用哪个定理比较恰当?师(启发提问)2:运用该定理解题还需要哪些边和角呢?请学生回答.生从题中可以知道角A和角C,所以角B就可以知道,又因为AC可以量出来,所以应该用正弦定理.生这是一道关于测量从一

5、个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边.8解:根据正弦定理,得,≈65.7(m).答:A、B两点间的距离为65.7米.[知识拓展]变题:两灯塔A、B与海洋观察站C的距离都等于Akm,灯塔A在观察站C的北偏东30°,灯塔B在观察站C南偏东60°,则A、B之间的距离为多少?老师指导学生画图,建立数学模型.解略:km.【例2】如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间距离的方法[教师精讲]这是例1的变式题,研究的是两个不

6、可到达的点之间的距离测量问题.首先需要构造三角形,所以需要确定C、D两点.根据正弦定理中已知三角形的任意两个内角与一边即可求出另两边的方法,分别求出AC和BC,再利用余弦定理可以计算出A、B的距离.解:测量者可以在河岸边选定两点C、D,测得CD=A,并且在C、D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ,在△ADC和△BDC中,应用正弦定理得,.8计算出AC和BC后,再在△ABC中,应用余弦定理计算出A、B两点间的距离.[活动与探究]还有没有其他的方法呢?师生一起对不同方法进行对比、分析.[知识拓展]若在河岸边选取相距40米的C、D两点,测得∠BCA

7、=60°,∠ACD=30°,∠CDB=45°,∠BDA=60°,略解:将题中各已知量代入例2推出的公式,得AB=206.[教师精讲]师可见,在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式.〔学生阅读课本14页,了解测量中基线的概念,并找到生活中的相应例子〕师解三角形的知识在测量、航海、几何、物理学

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。