资源描述:
《初中数学竞赛辅导专题讲座.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、《全等三角形》竞赛试题1.如图,已知AB∥CD,AD∥BC,AC与BD交于O,AE⊥BD于E,CF⊥BD于F,那么图中全等的三角形有【】A.5对B.6对C.7对D.8对2.在△ABC和中,,,补充条件后仍不一定能保证≌,则补充的条件是【】A.B.C.D.3.下面四个命题:①两个三角形有两边及一角对应相等,则这两个三角形全等;②两个三角形有两角及一边对应相等,则这两个三角形全等;③两个三角形的三条边分别对应相等,则这两个三角形全等;④两个三角形的三个角分别对应相等,则这两个三角形全等.其中真命题是【】A.②
2、③B.①③C.③④D.②④4.已知三角形的每条边长是整数,且小于等于4,这样的互不全等的三角形有【】A.10个B.12个C.13个D.14个5.如图,在等边△ABC中,AD=BE=CF,D、E、F不是中点,连结AE、BF、CD,构成一些三角形.如果三个全等的三角形组成一组,那么图中全等的三角形的组数是【】A.3个B.4个C.5个D.6个6.如图,D是△ABC的边AB上一点,DF交AC于点E,给出3个论断:①DE=FE;②AE=CE;③FC∥AB.以其中一个论断为结论,其余两个论断为条件,可作出3个命题.其
3、中正确的命题个数是.7.如图,如果正方形ABCD中,CE=MN,∠MCE=350,那么∠ANM的度数是.8.如图,在中,过A点分别作AD⊥AB,AE⊥AC,且使AD=AB,AE=AC,BE和CD相交于O,则∠DOE的度数是.9.如图,与中,,分别是高,,,,求证:.10.如图,中,∠ACB=900,,以C为中心将旋转角到∠A’B’C’的位置,(旋转过程中保持的形状大小不变)B恰好落在上A’B’,求旋转角(用表示).11.若在中,∠ABC的平分线交AC于D,AC=AB+BD,∠C=300,则∠B的度数为【】
4、A.450B.600C.750D.90012.将长度为20的铁丝为成三边长均为整数的三角形,那么不全等的三角形的个数是【】A.5B.6C.8D.1013.如图,在中,AB=AC,直线过A且∥BC,∠B的平分线与AC和分别交于D、E,∠C的平分线与AB和分别交于F、G.求证:DE=FG14.如图,已知DO⊥AB,OA=OD,OB=OC,求∠OCE+∠B的度数.15.如图,是等腰直角三角形,∠C=900,点M,N分别是边AC和BC的中点,点D在射线BM上,且BD=2BM,点E在射线NA上,且NE=2NA.求证
5、:BD⊥DE.16.如图,设P为等腰直角三角形ABC斜边AB上任意一点,PE垂直AC于点E,PF垂直BC于点F,PG垂直EF于点G,延长GP并在其延长线上取一点D,使得PD=PC.求证:BC⊥BD,且BC=BD.