资源描述:
《立体几何中的轨迹问题》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、例析空间中点的轨迹问题的转化求空间图形中点的轨迹既是中学数学学习中的一个难点,又是近几年高考的一个热点,这是一类立体几何与解析几何的交汇题,既考查空间想象能力,同时又考查如何将空间几何的轨迹问题转化为平面的轨迹问题来处理的基本思想。一.轨迹为点例1已知平面,直线,点P,平面之间的距离为8,则在内到P点的距离为10且到直线的距离为9的点的轨迹是()A.一个圆B.两条直线C.两个点D.四个点解析:设Q为内一动点,点P在内射影为O,过O,的平面与的交线为,PQ=10,OQ=6点Q在以O为圆心6为半径圆上,过Q作QM于M,又点Q到直线的距离为9QM=则点
2、Q在以平行距离为的两条平行线上两条平行线与圆有四个交点这样的点Q有四个,故答案选D。点评:本题以空间图形为背景,把立体几何问题转化到平面上,再用平面几何知识解决,要熟记一些平面几何点的轨迹。二.轨迹为线段例2.如图,正方体中,点P在侧面及其边界上运动,并且总保持,则动点P的轨迹是()。A.线段B.线段C.中点与中点连成的线段D.中点与中点连成的线段解:连结,易知所以,所以面,若P,则平面,于是,因此动点P的轨迹是线段。评注:本题是由线面垂直的性质从而求出点P的轨迹。例3已知圆锥的轴截面SAB是边长为2的等边三角形,O为底面中心,M为SO的中点,动
3、点P在圆锥底面内(包括圆周),若,则点P的轨迹是________。形成的轨迹的长度为__________。解析:在平面SAB中,过M作AM的垂线交AB于C,在底面上,过C作AB的垂线分别交底面圆于D,E两点,则AM面MDE,DE即为点P的轨迹,又AO=1,MO=,AM=,从而AC=,OC=,所以DE=.所以填上线段;.二.轨迹为直线例4(北京高考题)如图,AB是平面的斜线段,A为斜足,过点B作直线与AB垂直,则直线与平面交点的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线解析:由题意可知直线的轨迹应是过点B且与AB垂直的平面,该平面与平面交
4、点为一条直线,故答案选C.四.轨迹为圆弧例5如图,P是棱长为1的正方体表面上的动点,且AP=,则动点P的轨迹的长度为__________。解析:由已知AC=AB1=AD1=,在面BC1,面A1C1,面DC1内分别有BP=A1P=DP=1,所以动点P的轨迹是在面BC1,面A1C1,面DC1内分别以B,D,A1为圆心,1为半径的三段圆弧,且长度相等,故轨迹长度和为。五.轨迹为平面 例6.不共面的四个定点到平面的距离都相等,这样的平面个数为( )A.3 B.4 C.6 D.7解析:以不共面的四个定点为顶点构造四面体,则满足条件
5、的平面可分两类。第一类是中截面所在的平面有4个;第二类是和一组对棱平行且经过其它各棱中点的平面有3个,故满足条件的平面个数为4+3=7.故答案选D.评注:本题关键在于构造空间四边形,利用四面体的性质去求解。六.轨迹为圆例7,如图,三角形PAB所在的平面和四边形ABCD所在的平面垂直,且,AD=4,BC=8,AB=6,,则点P在平面内的轨迹是()A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分解析:由条件易得AD
6、
7、BC,且,AD=4,BC=8,可得=即,在平面PAB内以AB所在的直线为x轴,AB的中点O为坐标原点,建立直角坐标系
8、,则A(-3,0),B(3,0),设P(x,y),则有,整理可得一个圆的方程即。由于点P不在直线AB上,故此轨迹为圆的一部分故答案选A.点评:本题主要考查空间轨迹问题,是在立体几何与解析几何的交汇处命制的创新题,既考查了空间想象能力,又考查了代数方法(坐标法)研究几何轨迹的基本思想。七.轨迹为抛物线例8.如图,正方体的棱长为1,点M在棱AB上,且AM=,点P是平面ABCD上的动点,且动点P到直线的距离与动点P到点M的距离的平方差为1,则动点P的轨迹是(). A.圆B.抛物线C.双曲线D.直线分析:动点的轨迹问题是解析几何中常见的问题,因此我
9、们可以把立体关系转化到平面上去,利用解析几何的知识将问题解决。解:设于点F,过点P作于点E,连结EF,则平面PEF,,即。因为,且,所以。由抛物线定义知点P的轨迹是以点M为焦点,AD为准线的抛物线,故应选B.评注:从立体转化到平面,从平面到直线,显然是在逐级降维,平面比立体简单,直线又比平面简单,这是复杂向简单的转化。八.轨迹为椭圆例9,(浙江高考题)如图,AB是平面的斜线段,A为斜足,若点P在平面内运动,使得的面积为定值,则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线解析:由题意可知的面积为定值点P到AB的距离也为定值,点P在空
10、间中的轨迹应是以AB为旋转轴的圆柱面,又点P在平面内运动,所以动点P的轨迹应该是圆柱面被平面所截出的椭圆。故答案选B。点评:本题主要考查