AI帮助我们理解人类的智慧、人类智慧的边界.doc

AI帮助我们理解人类的智慧、人类智慧的边界.doc

ID:27509203

大小:167.50 KB

页数:8页

时间:2018-12-04

AI帮助我们理解人类的智慧、人类智慧的边界.doc_第1页
AI帮助我们理解人类的智慧、人类智慧的边界.doc_第2页
AI帮助我们理解人类的智慧、人类智慧的边界.doc_第3页
AI帮助我们理解人类的智慧、人类智慧的边界.doc_第4页
AI帮助我们理解人类的智慧、人类智慧的边界.doc_第5页
资源描述:

《AI帮助我们理解人类的智慧、人类智慧的边界.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、AI帮助我们理解人类的智慧、人类智慧的边界  主题为“引领人工智能,创造无限可能”的2018年中国图灵大会5月19日在上海召开,于1966年由国际计算机协会(ACM)设立的“图灵奖”,当之无愧是计算机界最负盛名、最崇高的奖项,因而有“计算机界的诺贝尔奖”之称。今年的中国图灵大会,更是汇聚了学界、业界的“最强大脑”,嘉宾阵容可谓豪华。在5月19日的论坛上,依图CEO朱珑博士给大家带来了一场深刻而又发人深省的关于AI时代的演讲。  在美国学习工作了十年之后,2012年的朱珑回国创立依图,也成为这一代AI创业的典

2、型代表。他的履历上来看有几段重要的经历,第一段是在UCLA的博士时期做统计建模和统计学计算,师从艾伦·尤尔,艾伦的博士导师正是著名的理论物理学家霍金;然后在MIT的AILab做计算机视觉建模相关领域的博士后研究员;最后一段则是回国前,在深度学习爆发之前的NYU的YannLecun实验室做研究员。  在2012年之前,很少有人会说自己是做AI的,只会说做统计建模、统计学习这些具体的方向。但从2016年AlphaGo登上《自然》杂志,到美国著名的《经济学人》杂志多期报道,AI频繁登上世界最著名的杂志成为封面主题

3、,如今已经进入了一个言必称AI的时代。与AI相关的各种言论,关于机器学习、图像识别、无人车、健康医药等等都逐步成为热点。而朱珑一直关注的是未来到底AI能发生一些什么?  没有权威的时代让AI正变得真假难辨    在朱珑的演讲中,他提到目前AI跟过去比较重大的区别:因为AI发展太快,现在技术处于一个很难辨别真假、好坏的时代。以深度学习为代表新的AI技术,因为过去参与的人和实践不多,全球性研究的大规模以及长时间的积累并不够。因为太“热”,使得各方都热衷参与到AI的讨论,交流甚至宣传当中,AI的观点就变得非常多,

4、这客观上使得很多专家真正有见地的意见和其他的言论很难区分开来,这不仅是中国,在美国也是同样。  另外一个则是:技术到了一个没有权威的时代。过去不管是从计算机视觉,还是整个人工智能领域,最好的实验室几乎能够垄断预测全球百分之七八十的进展,但是现在AI无论是在美国,还是在中国或欧洲,大家的发展是比较跳跃性的,在一两个实验室非常难预测主流到底在关注什么。这是整个时代的特点。  朱珑的背景是跨越学术界和工业界的创业典型,经历了中国2012年到2018年这五、六年非常特殊的阶段,正如他在演讲中提到的,过去中国没有成熟

5、的科技创业的情景和市场机制。过去,政府、投资者、媒体这三者可以频繁交流,在2012年之前,学术界不像今天这样经常会被政府或一流基金邀请交流。美国则因为市场成熟,这些人经常会在一起交流,甚至都是朋友。中国这几年开始,各种背景的人在一起交流的越来越多,这是新的形态。  技术突破打开了工业界应用的突破  技术上,2015年,机器识别人脸的水平正式超过人类。人脸识别中机器比人强,最简单基础应用就是1:1的比对,证明你就是你,大家熟知的是2017年iPhone推出的刷脸开机;其次是1:N,是通过任一设备里捕捉到的人脸

6、,从一个省(亿级)或一个国家的人像库(十亿级)里来回答你是谁,这对识别性能的要求提升了一个量级,是千倍万倍地增长。这意味着识别技术的突破,打开了工业界中的产品的突破。  2012年之前,可以认为人脸识别技术几乎没有什么发展,2017年人脸识别最高水平可识别规模在20亿人,大概比2016年可识别千万提高两百倍,比2015年提高了数万倍。那未来的发展到底是什么样?会不会再10倍、100倍甚至万倍地发展?  大家现在也有个讨论,技术是不是发展到了瓶颈?各项算法之间有没有区别?随着AI热潮的涌现,各家AI公司都会频

7、繁参加一些业界的比赛以证明自己的算法实力,以人脸识别算法为例,可以看到各AI公司在LFW等类似的计算机视觉比赛中都取得99.xx%的成绩。于是人们会问:AI算法是否已经趋同了?如果算法精度差别不大(只有几个百分点),是否意味着创业公司的技术已经同质化了,没有技术创业的核心竞争力了呢?  但实际上,这是典型的认知误区。我们在朱珑的演讲中看到了一张表,可能更准确的回答了这个问题,这是中国某省1亿人像库的情况下,真实的刑侦案件的破案环境的性能测试对比的表,参与方是知名的几大人脸识别公司:    我们可以这样理解这

8、张图:必须对应场景来谈算法精度。不同场景的算法精度不具备任何可比性,甚至不代表有相关性。换句话说在简单场景下算法精度高,不代表在复杂的高难度场景下有更大的概率可以把算法精度做高,就比如在小学生的考试中拿满分,不见得可以在大学的考试中也拿满分。因为很多学术界的比赛使用的都是公开数据集,数据集内多是互联网照片,类似于难度小的开卷考试,大家很容易把测试成绩刷到比较高。但在实际的应用中则会遇到各种高难度场景,包括变形、昏

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。