核磁共振技术及其应

核磁共振技术及其应

ID:27497601

大小:489.00 KB

页数:18页

时间:2018-12-03

核磁共振技术及其应_第1页
核磁共振技术及其应_第2页
核磁共振技术及其应_第3页
核磁共振技术及其应_第4页
核磁共振技术及其应_第5页
资源描述:

《核磁共振技术及其应》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、核磁共振技术及其应用扬州大学生物科学与技术学院概述•核磁共振的方法与技术作为分析物质的手段,由于其可深入物质内部而不破坏样品,并具有迅速、准确、分辨率高等优点而得以迅速发展和广泛应用,已经从物理学渗透到化学、生物、地质、医疗以及材料等学科,在科研和生产中发挥了巨大作用。•核磁共振是1946年由美国斯坦福大学布洛赫(F.Block)和哈佛大学珀赛尔(E.M.Purcell)各自独立发现的,两人因此获得1952年诺贝尔物理学奖。50多年来,核磁共振已形成为一门有完整理论的新学科。•瑞士科学家库尔特·维特里希则发明了“利用核磁共振技术测定溶液中生物大分子三维结构法”。这种方法的优点是可对溶液中

2、的蛋白质进行分析,进而可对活细胞中的蛋白质进行分析,能获得“活”蛋白质的结构,其意义非常重大。这种方法的原理可以用测绘房屋的结构来比喻首先选定一座房屋的所有拐角作为测量对象,然后测量所有相邻拐角间的距离和方位,据此就可以推知房屋的结构。维特里希选择生物大分子中的质子(氢原子核)作为测量对象,连续测定所有相邻的2个质子之间的距离和方位,这些数据经计算机处理后就可形成生物大分子的三维结构图。核磁共振基本原理•核磁共振原理•实现核磁共振的两种方法•检测共振信号的方法•傅里叶(Fourier)变换核磁共振原理半数以上的原子核具有自旋,旋转时产生一小磁场。当加一外磁场,这些原子核的能级将分裂,既塞

3、曼效应。在外磁场B0中塞曼分裂图:共振条件:=0=0实现核磁共振的两种方法a.扫场法:改变0b.扫频法:改变检测共振信号的方法优点是比较简单,样品不易饱和,缺点是振荡频率的稳定性较差,噪音电平较高。一般只用于宽谱的波谱•吸收法仪与测场仪优点是工作稳定度高,噪音低,但漏电流•感应法相位不易调整。常用在商业波谱仪优点是频率稳定好,噪音低,缺点是频率调谐范围•平衡法不够宽。常用于灵敏度和分辨力高的波谱仪傅里叶(Fourier)变换•时域信号F变换频域信号频域谱S(t1,t2,…)S(1,2,…)核磁共振新技术•核磁双共振•二维核磁共振•NMR成像技术•魔角旋转技术•极化转移技术

4、核磁双共振•双共振是同时用两种频率的射频场作用在两种核组成的系统上,第一射频场B1使某种核共振,第二射频场B2使另外一种核共振,这样两个原子核同时发生共振。1脉冲双核自旋系统检测器2扰动•第二射频场为干扰场,通常用一个强射频场干扰图谱中某条谱线,另一个射频场观察其他谱线的强度、形状和精细结构的变化,从而确定各条谱线之间的关系,区分相互重叠的谱线。二维核磁共振及多维核磁共振二维核磁共振使NMR技术产生了一次革命性的变化,它将挤在一维谱中的谱线在二维空间展开(二维谱),从而较清晰地提供了更多的信息。二维核磁共振的脉冲序列t1t2预备期发展期混合期探测期F(t2)F(t1)S(t1,t2)

5、S(t1,2)S(1,2)2二维谱示意图12D在研究更大分子体系时,谱线也出现了严重的重叠,为了解决这一问题,人们将2D推广到3D甚至多维。NMR成像技术•投影重建成像方法•Fourier成像方法•弛豫时间成像方法•逐点扫描方法•线扫描方法•切片扫描方法•高分率成像和快速成像法Fourier成像方法Fourier成像是应用十分广泛的一种方法,它与二维(多维)NMR相似。GXXGyy核磁共振的脉冲序列t1t2预备期发展期混合期探测期F(t2)F(t1)S(t1,t2)S(t1,2)S(1,2)=0+GXX)2=0+Gyy)S(x,y)魔角旋转技术

6、在固体中自旋之间的耦合较强,共振谱较宽,掩盖了其他精细的谱线结构,耦合能大小与核的相对位置在磁场中的取向有关,其因子是(3cos2β-1),如果有一种方法使β=θ=54.440(魔角),则3cosβ-1=0,相互作用减小,达到了窄化谱线的目的。魔角旋转技术就是通过样品的旋转来达到减小相互作用的,当样品高速旋转时β与θ的差别就会平均掉。极化转移技术脉冲序列1J灵敏核非灵敏核检测(非灵敏核)脉冲序列2极化转移(PT)是一种非常实技术,它用二种特殊的脉冲序列分别作用于非灵敏核和灵敏核两种不同的自旋体系上。通过两体系间极化强度的转移,从而提高非灵敏核的观测灵敏度,基本的技巧是从高灵敏度的富核处“

7、借”到了极化强度。核磁共振应用•最初,核磁共振技术主要用于核物理研究方面,用它测量各种原子核的磁矩,误差仅是0.003%~0.005%;迄今,它已广泛应用于化学、食品、医学、生物学、遗传学等学科领域,已成为在这些领域开展研究工作的有力工具,甚至是某些领域(如:化学、医学诊断、药物学等)常规分析中不可缺少的手段。1985年,维特里希等人公布了第一次利用NMR法测定的溶液中蛋白质———蛋白酶抑制剂IIA(proteinaseinhibi

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。