欢迎来到天天文库
浏览记录
ID:27487549
大小:85.50 KB
页数:8页
时间:2018-12-04
《IBM、谷歌和亚马逊对于AI的技术和市场的研究解读.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、IBM、谷歌和亚马逊对于AI的技术和市场的研究解读 曾几何时,AI(人工智能)成为了诸多企业的口头禅,不管这个企业身处什么产业,是什么样的企业,好像不带上AI就落伍了,媒体更是天天充斥着各种AI的报道,我们也是听得耳朵磨出了糨子。在此我们不妨以业内公认的AI或技术或市场中的代表IBM、谷歌和亚马逊为例,看看AI的技术和市场究竟如何? IBM“沃森”(IBMWatson):被疑为噱头商业化成本高企无实效 提及沃森,这个自从6年前在美国答题秀节目Jeopardy中打败人类选手,就占据了无数的新闻头条,并最早商业化(主要用于医疗领域癌症的检测和预防)的所谓AI系统。不过,随着时间的推移,
2、近期沃森却屡屡遭受业内的质疑。 例如华尔街投行杰富瑞分析师詹姆斯?基斯纳(JamesKisner)发布的关于IBM人工智能“沃森”(IBMWatson)的研究报告就称:IBM对沃森的投资很难给股东带来价值回报,并用案例说明了IBM沃森存在的广泛问题,即该案例来自IBM沃森与MD安德森癌症中心之间的合作,即在向沃森项目浪费了6000万美元之后,MD安德森癌症中心最终停止了与IBM在这方面的合作,并承认这项技术尚未准备好临床使用。而MD安德森癌症中心的情况并非个案。多名人工智能领域的创业者都表示,他们在金融服务和生物科技领域的客户在与IBM打交道时都有过类似经历。 与华尔街投行的分析
3、相比较,今年五月,在CNBC的金融市场观察栏目“ClosingBell”上,风险投资人ChamathPalihapitiy更是语出惊人:“实话实说,Watson就是个笑话。我认为,IBM非常擅长利用销售和营销手段,来诱导信息不对称的人掏腰包。” 而美国认知科学会创始人RogeSchank认为沃森根本不是认知计算系统,IBM有夸大吹嘘嫌疑,并做了如下论证,即为了展示沃森的超凡智能,IBM从2015年以来在热播电视节目中投放了沃森的广告。在广告中,沃森程序与摇滚灵魂人物鲍勃?迪伦进行了对话。 对此,Schank指出,这个广告恰恰说明沃森完全没有理解迪伦的作品。尽管“时间流逝”之类的词汇在
4、迪伦的作品中时常出现,但所有熟悉迪伦作品的人都知道,迪伦是一位抗争歌手,他的歌曲最关心的是民权、反战这些主题。不过,迪伦歌的歌词里并没有直白地写着“反战歌曲”、“民权运动”。沃森只根据词频统计等方式找到“时间流逝”、“爱情凋零”,而没有真正理解迪伦作品的真正主题。 谷歌DeepMind:除了围棋技术与商业化类“沃森”前景不明 至于谷歌,去年AlphaGo依赖人工智能挑战号称最难的人类游戏围棋大获成功,让人工智能背后的“深度学习”广为人知,也把谷歌此前收购的AI科技公司DeepMind推到了公众面前。对此,就像前微软亚洲研究院常务副院长芮勇所言,想要实现真正的人工智能还有很长的路要走,
5、今天所有的人工智能几乎都是来自于人类过去的大数据,没有任何一个领域的能力源自自我意识,不管是象棋还是围棋,计算机都是从人类过去的棋谱中学习。假如让AlphaGo去下跳棋,它就会完全傻掉。甚至说把围棋的棋盘稍作修改,AlphaGo都招架不住,但是人类就没有问题。AlphaGo可以打败三十多岁的李世石,但它的学习能力不及一个5岁的小孩,这二者是有很大区别的。 与沃森相比,DeepMind则刚刚进入商业领域的应用。去年七月,谷歌宣布DeepMind已找到方法将谷歌数据中心的制冷用电量减少2/5。它的算法先分析数据中心的操作日志来理解任务,然后通过反复模拟运行来优化过程。同样,DeepMi
6、nd也已经进入医疗行业。去年11月,公司获得了首个付费项目,与NHS公立医院皇家自由伦敦医院(RoyalFreeLondon)签下五年的合同,为其处理170万份病历。此外,DeepMind还获得了访问其它伦敦医院两个数据库的权限,即DeepMind利用AI软件分析了约100万份视网膜扫描报告成功找到了退行性眼疾的早期征兆,或通过头颈部癌症图像让AI软件学会区分健康和癌组织之间的不同。 从上述DeepMind的商业化看,与沃森类似,均需要首先获取现实世界的大数据,即使拥有大量数据的可供挖掘的谷歌,运用AI及机器学习技术改进医院、电网及工厂等系统时,获取其具体操作数据也非常重要。原因很简单
7、,没有人类提供的背景数据,哪怕极为简单的挑战,现有的AI技术也无法胜任。因此,当前的AI技术实际上并不“智能”,也不是解决问题的万能手。 提及数据,在人机大战前,DeepMind耗费了数年时间学习围棋。参加《危险边缘》问答的沃森,研发人员输入了数TB的有关问答节目和自然语言实例的数据,来帮助它理解这一节目的问答模式。只有靠人类这样有针对性的密集“训练”,这些机器才能表现得如此出色。会议安排助手X.ai这类看似简单的应用程序却花费了
此文档下载收益归作者所有