欢迎来到天天文库
浏览记录
ID:27414692
大小:61.50 KB
页数:10页
时间:2018-12-03
《机械力化学效应及应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、机械力化学效应及应用 机械力化学效应是通过对物质施加机械力而引起物质发生结构及物理化学性质变化的过程,以下是小编搜集整理的一篇探究机械力化学效应的论文范文,供大家阅读参考。 摘要:简述了机械力化学的概念、化学效应及其作用机理,介绍了机械力化学在矿物活化与改性、纳米材料制备、高分子材料合成、有毒废物处理等方面的应用。 关键词:机械力化学;机械活化;纳米材料;高分子材料;环境保护 20世纪20年代~50年代,德国学者e+Me'O(Cl、S)→MeO(Cl、S)+Me' 已研究过的反应体系有:Ag2O/A
2、l,Cr2O3/Zn,ZnS/Al,NiCl2/Mg等。 (2)金属与C、Si、B之间的化学反应,生成高温化合物相。 Me+X→MeX (3)金属与陶瓷之间的化学反应。 Me+X1X2→MeX1+MeX2 如Ti+Si3N4→TiN+TiSi2 (4)金属氧化物之间的化合反应。 MeO+Me'O→MeMe'O 如Fe2O3+MeO→MeFe2O3(Me=Zn、Ni、Cu、Mg等) (5)纯金属间的放热化学反应。如Al/Ni、Al/Ti等反应体系。 (
3、6)化合物之间的固态化学反应。如 ZrCl4+2CaO→ZrO2+2CaCl2 1.3.2固-液反应体系 如NiS+H2O=NiO+H2S 固-液反应系统主要是金属与有机溶剂之间的化学反应。液相反应剂一般是含碳或含氮有机物,如庚烷、苯胺等,通过反应可以生成金属碳化物或氮化物粒子。 1.3.3固-气反应体系 如3SiO2+4N2→2α-Si3N4+3O2 固-气反应仅适合于活性高、氮化或碳化反应焓很高的体系。一般可选择氮气、分解氨、氨气作为氮源。 2机械力化学的作用机理 机械力化学反应历
4、程可由图1表示 从图中可看到:无机械力作用时,反应只以很小的速度进行,引入机械作用后,反应迅速增强并随后达到稳态,停止机械作用后,反应速度迅速下降。影响机械力化学反应历程的因素很多,各种因素间的相互作用,加之研究手段不全面,关于机械力化学的机理尚没有一个统一的界定,目前主要有以下几种理论。 (1)等离子体模型。Thiessen等认为,机械力作用导致晶格松弛与结构裂解,激发出高能电子和等离子区。一般的热化学反应温度在高于1000℃时,电子能量也不会超过4eV,即使光化学的紫外电子的能量也不会超过6eV。而机械力作用下,高激发状态诱发
5、的等离子体产生的电子能量可超过10eV,因此机械力化学有可能进行通常情况下热化学所不能进行的反应,使固体物质的热化学反应温度降低,反应速度加快。 (2)固态合成反应模型。席生岐等从扩散理论出发,分析了高能球磨过程中的扩散特点,提出了固态合成反应模型并进行分析计算,结果表明:高能球磨过程中固态反应能否进行,取决于体系在球磨过程中能量升高的程度,而反应完成与否受体系中的扩散过程控制,即受制于晶粒细化程度和粉末碰撞温度。一方面由于颗粒在超细磨过程中,被强烈塑性变形,产生应力和应变,颗粒内产生晶格缺陷和晶形转变、非晶化,能显著降低元素的扩散
6、激活能,使得组元间在室温下可显著进行原子或离子扩散,颗粒不断冷焊、断裂、组织细化,形成了无数的扩散-反应偶;另一方面,因颗粒表面化学键断裂而产生不饱和键、自由离子和电子等原因,导致晶体内能增高,物质内部迅速发展的裂纹使其顶端温度和压力增高,最终导致物质反应的平衡常数和反应速度常数显著增大。应力、应变、缺陷和大量纳米晶界、相界的产生使系统储能很高,提高了粉末活性,从而有可能引起纳米尺寸下的固相反应,有时甚至可以诱发多相化学反应。 (3)热点理论。机械力作用在固体颗粒上造成的弹性应力是机械力化学效应的重要因素,弹性应力能引起原子水平的应
7、力集中,一般由此而改变原子间的结合常数,从而改变它们本来的振动频率,也改变了原子间距和价键角度,结果改变了化学结合能,使反应能力增大。弹性应力还可引发驰豫,由此形成激化的振动状态可导致化学反应的发生,这种能量在应力点以热点的形式出现。虽然宏观温度一般不会超过60℃,但局部碰撞点的温度要远高于60℃,这样的温度将引起纳米尺寸的化学反应,在碰撞点处产生极高的碰撞力,高达3.30GPa~6.18GPa,如此高的碰撞力有助于晶体缺陷和畸变的扩散以及原子的重排,所以局部碰撞点的升温可能是导致机械力化学反应的一个促进因素。 3机械力化学效应的应
8、用 3.1矿物活化与改性 矿物机械活化是指机械作用使矿物局部形成晶格畸变,发生位错,使晶格点阵中粒子排列部分失去周期性,形成晶格缺陷,导致晶格内能增高,表面改性、反应活性增强,以便于矿物浮选富集和提取,从而改善浸出过
此文档下载收益归作者所有