欢迎来到天天文库
浏览记录
ID:27366191
大小:119.50 KB
页数:3页
时间:2018-12-02
《第13章轴对称(一)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第十三章轴对称(一)班级:________姓名:________得分:________一、单选题1.下列美丽的图案中是轴对称图形的个数有()A.1个B.2个C.3个D.4个2.如图所示,在△ABC中,AB=AC,∠A=36°,两条角平分线BE、CD相交于点O,则图中等腰三角形有()A.3个B.5个C.7个D.8个第2题图第3题图3.如图,△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作MN∥BC,分别交AB,AC于点M,N,若AB=12,AC=18,BC=24,则△AMN的周长为()A.30B.36C.39D.424.如图,直线l1∥l2,以直线l1上的点A为圆
2、心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=()A.23°B.46°C.67°D.78°第4题图第5题图5.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于()A.90°B.75°C.70°D.60°二、填空题6.小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表如图所示,则电子表的实际时刻是。7.等腰三角形一个顶角和一个底角之和是,则顶角等于.8.若点,关于轴对称,则____________..第9题图第10题图9.如图,△ABC中,AB=14,AM平分∠BAC,∠BAM=15°,点D、E分别为AM
3、、AB的动点,则BD+DE的最小值是______.10.如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,下面四个结论正确的有________________.①BP=CM;②△ABQ≌△CAP;③∠CMQ的度数不变,始终等于60°;④当第秒或第秒时,△PBQ为直角三角形.三、解答题11.如图,∠A=90°,E为BC上一点,A点和E点关于BD对称,B点、C点关于DE对称,求∠ABC和∠C的度数.12.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.13.如图,
4、已知Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分线分别交BC、CD于E、F.试说明△CEF是等腰三角形.14.在等边△ABC中:(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM,只需证△APM是等边
5、三角形;想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).参考答案1.C2.D3.A4.B5.D6.10:21.7.40°8.49.710.②③④11.解:∵A点和E点关于BD对称,∴∠ABD=∠EBD,即∠ABC=2∠ABD=2∠EBD.又B点、C点关于DE对称,∴∠DBE=∠C,∠ABC=2∠C.∵∠A=90°,∴∠ABC+∠C=2∠C+∠C=3∠C=90°.∴∠C=30
6、°,∴∠ABC=2∠C=60°.12.证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.13.解:∵∠ACB=90°,∴∠B+∠BAC=90°.∵CD⊥AB,∴∠CAD+∠ACD=90°.∴∠ACD=∠B.∵AE是∠BAC的平分线,∴∠CAE=∠EAB.∵∠EAB+∠B=∠CEA,∠CAE+∠ACD=∠CFE,∴∠CFE=∠CEF.∴CF=CE.∴△CEF是等腰三角形.14.解:(1)∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ=20
7、°,∴∠PAQ=∠BAC﹣∠BAP﹣∠CAQ=60°﹣20°﹣20°=20°,∴∠BAQ=∠BAP+∠PAQ=40°;(2)①如图2;②∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ,∵点Q关于直线AC的对称点为M,∴AQ=AM,∠QAC=∠MAC,∴∠MAC=∠BAP,∴∠BAP+∠PAC=∠MAC+∠CAP=60°,∴∠PAM=60°,∵AP=AQ,∴AP=AM,∴△APM是等边三角形,∴AP=PM.
此文档下载收益归作者所有