通信信息模糊一致算法在计算机通信当中优化使用

通信信息模糊一致算法在计算机通信当中优化使用

ID:27331016

大小:52.50 KB

页数:5页

时间:2018-12-02

通信信息模糊一致算法在计算机通信当中优化使用_第1页
通信信息模糊一致算法在计算机通信当中优化使用_第2页
通信信息模糊一致算法在计算机通信当中优化使用_第3页
通信信息模糊一致算法在计算机通信当中优化使用_第4页
通信信息模糊一致算法在计算机通信当中优化使用_第5页
资源描述:

《通信信息模糊一致算法在计算机通信当中优化使用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、通信信息模糊一致算法在计算机通信当中优化使用通信信息模糊一致算法在计算机通信当中优化使用引言  计算机通信技术由于在很多热门领域都得到了广泛的应用,一直以来就是科研工作者的重要的研究课题。计算机在通信的过程当中受到通信热点周围的干扰信号的干扰,其抗干扰能力的直接决定了通信的质量。在计算机的应用当中,大功率的窄带信号往往会随机的部署在其周围,此时如果单纯的依靠窄带滤波器等器件则不足以滤除干扰信用,这就很容易造成计算机信号的失真,因此需要对通信算法进行优化,从而来确保计算机通信的准确无误[1]。本文因此提出一种基于通信信息模糊一

2、致的计算机通信算法,充分利用了模糊矩阵具有的一致性特点,在变化域当中,完成对干扰信号的识别和滤除,从而最终能够保证原始的信号无失真的恢复。  一、通信数据模糊一致矩阵的建立  模糊控制就是采用模糊数学的基本的思想和理论的控制方法。传统的控制领域,控制系统的动态模式的准确性是影响控本文由.L.收集整理制结果的关键,系统里具有的动态信息详细程度也决定了精确控制的成果。然而在复杂的系统当中,变量太多往往难以正确描述系统,因此尝试采用模糊数学优化算法来处理这些控制问题。  优化算法首先进行模糊一致性矩阵的构建,步骤具体如下:模糊矩阵

3、S=(Sij)nn满足下列公式:  那么,我们可以将该矩阵称为模糊一致性矩阵[2]。在采用该模糊一致矩阵对计算机的通信干扰信号进行划分的过程当中,矩阵当中的元素Sij可以用来对第i个评判指标Si对于第j个评判指标Sj的重要的程度[3]:  (1)当Sij=0.5的时候,说明Si和Sj具有一致的重要度。  (2)当0≤Sij<0.5的时候,则说明Sj的重要性强于Si。  (3)当0.5≤Sij<1的时候,说明Si的重要性要大于Sj。  我们通过分析模糊一致矩阵的可以得出:  (a)通信模糊一致矩阵的每个

4、指标对于自身而言,其重要性是一致的,因此能够得出该对角线的数值为0.5[4]。  (b)处于模糊一致矩阵当中不同两行的相互对应的位置的数值差值是一个常数。  2信息熵值和模糊一致性的判断  2.1计算干扰信号的信息熵值  信息熵值被用来描述通信系统当中某个指标对于整个系统的重要的程度。首先量化指标数据,从而得到每个指标在整个系统当中的重要性,然后再利用这些数据指标构建出模糊一致性矩阵[5]。大量的数据在完成重要程度分析后形成训练集,然后用来构建模糊一致矩阵。如果训练集用字母W来表示,用{E1,E2,E3...}来表示类别集用

5、,此时选择合理的属性P完成不同子集的划分。如果P集有相互独立的值{P1,P2......Pn},那么就能够将训练集W划分成为E1,E2.....Ei这i个子集[6]。我们有:  三、系统结果分析  信号一般分为单音信号和双音信号,因此干扰也可分为单音干扰和多音干扰两种。单音干扰指的是接收机在一定的信道频率上,存在着单音频率偏移中心频率的的现象。一般而言单音干扰通常是从附近的模拟蜂窝基站传送的窄带信号。由于在计算机的应用当中,大功率的窄带的干扰信号往往会干扰着随机热点发出的信号,本文的测试主要选取了单音干扰和窄带信号干扰进行模

6、糊一致算法和传统算法的对比。信号源由Matlab仿真软件产生。系统通过Matlab软件模拟了信号产生、调制、信道等系统。Matlab软件在数学类科技计算方面首屈一指,被用来广泛的进行矩阵的计算、绘制数据和函数,完成算法的实现,创建用户界面,同时也能够和其他的编程语言很好的对接。目前被广泛的用在图像处理、信号检测、金融分析等领域。其运行界面如图1所示。  通过Matlab仿真能够测试本文设计的通信信息模糊一致算法优化性能,通过和传统算法误码率的对比[10],得到下图:  通过上图可以看到,当Eb/N0=3dB的时候,信噪比如果

7、小于-30dB,那么本文设计的算法和传统的算法都能够较强的一致干扰信号,但是随着信噪比的增大,当信噪比超过-30dB的时候,能够看到传统算法和本文设计的算法对于信号的抗干扰一致能力均开始增加,误码率下降,并且能够看出传统算法的误码率下降的幅度要小于本文设计的模糊一致算法[11]。  本文的算法的误码率要优于传统的算法。因此可以看出,在干扰信号较强的时候,本文设计的模糊一致算法相比于传统的算法而言对于干扰信号具有更好的一致作用,误码率会更低[12]。并且传统的算法会将干扰信号传递到旁瓣信号当中,降低算法的抗干扰能力[13]。 

8、 从上图当中能够看到,当窄带的干扰信号能量较小的时候,两种算法的性能差距不大,甚至传统观的算法抗干扰能力优于本文的算法。但是随着窄带干扰信号强度的增大,本文提出的算法优异性逐步的体现出来。因此,在强干扰的环境当中,本文提出的算法具有很好的看干扰能力,能够有效的抑制干扰信号,从而保证计算机通

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。