南京航空航天大学经济管理学院精品课程群建设组

南京航空航天大学经济管理学院精品课程群建设组

ID:27215732

大小:1.24 MB

页数:45页

时间:2018-12-01

南京航空航天大学经济管理学院精品课程群建设组_第1页
南京航空航天大学经济管理学院精品课程群建设组_第2页
南京航空航天大学经济管理学院精品课程群建设组_第3页
南京航空航天大学经济管理学院精品课程群建设组_第4页
南京航空航天大学经济管理学院精品课程群建设组_第5页
资源描述:

《南京航空航天大学经济管理学院精品课程群建设组》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、南京航空航天大学经济管理学院精品课程群建设组灰色博弈理论及其经济应用研究非合作博弈的产生:博弈论始于1944年,它是以冯·诺伊曼(VonNeumann)和摩根斯坦恩(OskarMorgenstern)合作的《博弈论与经济行为》一书的出版为标志。   到20世纪50年代,合作博弈发展到鼎盛期,非合作博弈也开始产生。纳什(Nash.J.F.)的《N人博弈的均衡点》(1950),《非合作博弈》(1951)明确提出了纳什均衡(NashEquilibrium),图克(Tucker)则定义了囚徒困境(Prisoners’Dilemma,1950)。两人的著作奠定现代非合作

2、博弈论的基石。博弈理论及其经济应用研究的历史纳什均衡:纳什均衡指的是这样一种战略组合,这种战略组合由所有参与人的最优战略组成,也就是说给定别人战略的情况下,没有任何单个参与人有积极性选择其它战略,从而有积极性打破这种均衡。有句不太褒义的说来说,纳什均衡是一种“僵局”:给定别人不动的情况下,没有人有兴趣动。纳什均衡的经济意义:假设博弈中的所有参与人事先达成一种协议,规定出每个人的行为规则。那么,我们要问的一个问题是:在没有外在的强制力约束时,当事人是否会自觉遵守这个协议?或者说,这个协议是否会自动实施(Self-enforcing):如果一个协议不构成纳什均衡,

3、它就不会自动实施,因为至少有一个参与人会违背这个协议,不满足纳什均衡要求的协议是没有意义的。囚徒困境(Prisoner’dilemma):-8,-80,-10-10,0-1,-1坦白坦白抵赖抵赖囚徒A囚徒B本例中,纳什均衡就是(坦白,坦白):给定B坦白的情况下,A的最优战略就是坦白;同样,给定A坦白的情况下,B的最优战略就是坦白。事实上,(坦白,坦白)还是一个占优战略(Dominantstrategy)均衡:就是说,不论对方如何选择,个人的最优选择就是坦白。囚困境反映了一个很深刻的社会问题:个人理性与集体理性的矛盾。虽然若两囚犯都抵赖,各判刑1年,显然比各判刑

4、8年好。但是,这个帕累托改进办不到,因为它不满足个人理性要求,(抵赖,抵赖)不是纳什均衡。换个角度看,即使两囚犯在被抓住之前建立一个攻守同盟(死不坦白),这个盟约也没有效力,因为它不构成纳什均衡,没有人有积极性遵守这个协议。逆向归纳法(BackwardInduction):泽尔腾(R.Seleten,1965)首次将动态分析引入博弈论,提出了纳什均衡的第一个重要改进――子博弈精炼纳什均衡(Sub-gamePerfectNashEquilibrium)和其求解方法――逆向归纳法(BackwardInduction)。博弈论专家常常使用“序惯理性”(Sequent

5、ialrationality):指不论过去发生了什么,参与人应该在博弈的每个时点上最优化自己的策略。子博弈精练纳什均衡所要求的正是参与人应该是序惯理性的。  对于有限完美信息博弈,逆向归纳法是求解子博弈精炼纳什均衡的最简便的方法。因为有限完美信息博弈的每一个决策结都开始一个子博弈。求解方法:  最后一个结点上的子博弈(纳什均衡)→倒数第二个(纳什均衡)→······→初始结点上的子博弈(纳什均衡)。豪尔绍尼(Harsany,1967)首次把信息不完全因素引入博弈分析,定义了不完全信息静态博弈的基本均衡概念――贝叶斯纳什均衡(Bayesian-NashEquib

6、rium),构建了不完全信息博弈的基本理论。之后,不完全信息动态博弈(Dynamicgameofincompleteinformation)得到迅速发展,弗得伯格和泰勒尔(FurdenbergandTirole,1991)定义了它的基本概念――精炼贝叶斯纳什均衡(PerfectBayesian-NashEquilibrium)。博弈论的体系结构博弈论的划分可以从两个角度进行。第一个角,度参与人行动的先后顺序。从这个角度,博弈可以划分为静态博弈(Staticgame)和动态博弈(Dynamicgame)。静态是指参与人同时选择行动,或虽非同时但行动者并不知道前行

7、动者采取了什么具体行动;动态是指参与人的先后行动顺序,且后行动者能够观察到先行动者物选择的行动。第二个角度,参与人对对手的特征、战略空间及及支付函数的认识。从这个角度,博弈可以划分为完全信息博弈和不完全信息博弈。博弈论的体系结构静态动态完全信息完全信息静态博弈:纳什均衡(1950,1951)完全信息动态;子博弈精练纳什均衡;泽尔腾(1965)不完全信息不完全信息静态博弈;贝叶斯纳什均衡;海萨尼(1967-1968)不完全信息动态博弈;精练贝叶斯纳什均衡;泽尔腾(1975),Kreps和Wilson(1982),Fudenberg和Tirole(1991)博弈论

8、的分类经典博弈论的总结20世纪70年代

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。