资源描述:
《线性代数简明教程-第二版-答案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第一章矩阵1、写出下列由变量x,。y到变量x1,y1的线性变换的系数矩阵:xx0yxxcosysin11(1)(2)y0x0yyxsinycos1110cossinAA00sincos2、二省城市间如下图,每条线上的数字表示连接这两个城市的不同通路总数,试用矩阵形式表示城市间的通路情况。b1b1b2b3a4a1413131ba202222a22ba1a23b140b212b3323.111123A
2、111,B124,111051213223AB2A217204292058ATB0562904、计算2a11a12b1x211(2)xy1a21a22b2y(1)310bbc11201222axayc2axy2bx2by11221212744ax2ay2c122axy2bx12b1y94311221212334a11a12a13x
3、补充xyza21a22a23yaaaz313233222axayaz(aa)xy(aa)xz(aa)yz1122331221133123325、已知两个线性变换x12y1y3y13z1z2x22y13y22y3y22z1z3,x4yy5yyz3z3233123求从z,z,z到x,x,x的线性变换123123分析:XAY,YBZ,XABZ201310613A232B201AB
4、124941501310116x16z1z23z3所以x212z14z29z3,x10zz16z31236.设mmf(x)axaxa,是01mAn阶方阵,定义mmf(A)aAaAaE,01m221当f(x)x5x3,A时,33求f(A)解:f(A)A25A3EO2227.设方阵A满足A3A2EO,证明:A及A2E都可逆,并用A分别表示出它们的为可逆矩阵。2证明:A3A2E(A3E)A2E111
5、(A3E)AEA(A3E)222A2AA2E4EO,(A2E)A(A2E)4E(A2E)(AE)4E11(A2E)(A2E)(AE)E28.利用初等行变换把下列矩阵化成行最简形矩阵:1231(1)A24621231r22r11231rr00003100003142210110(2)B121341433010110rr213142212134
6、1433010110r3r2101112r3r102224rr042204110110(1)r201112022240422010110r32r201112r4r000004200268110110r420111200134r3r40000010044rr2301022rr0013413000009.对下列初等行变换,写出相应的初等
7、方阵以及A和B之间的关系式。10121012r22r1A2312~0332112111211002c3c1~0332B1131100100r22r1E3010~210P001001100010100100cc0100E31Q40010~001000010001PAQB10.设P1AP,其中P14,10
8、11029求A提示:1APP919111A(PP)PPPPPP91PP40011.设A030,ABA2B002求B提示:(A2E)BAB1(A2E)1A