欢迎来到天天文库
浏览记录
ID:27175233
大小:19.34 KB
页数:8页
时间:2018-12-01
《xx届高考数学总复习考点推理与证明专项教案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。XX届高考数学总复习考点推理与证明专项教案本资料为woRD文档,请点击下载地址下载全文下载地址 推理与证明 【专题要点】 .归纳推理:主要应用于先由已知条件归纳出一个结论,并加以证明或以推理作为题目的已知条件给出猜测的结论,并要求考生会应用或加以证明. 2.类比推理:通过两类事物的相似性或一致性,用一类事物的性质去推测另一类事物的性质,得出一个明确的结论.常见的有结论类比和方法类比. 3.演绎推理 4.证明 ①综合法和分析
2、法:会用这两种方法证明具体问题; ②反证法近几年高考中加大了其考察力度. ③数学归纳法.在有关正整数的问题证明时常用数学归纳法进行证明. 【考纲要求】 合情推理与演绎推理 ①了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。
3、 ②了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理. ③了解合情推理和演绎推理之间的联系和差异. 2直接证明与间接证明 ①了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点. ②了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点. 3数学归纳法 了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. 【知识纵横】 【教法指引】 高考的“推理与证明”一般不单独设题,主要和其他知识结合在一起,属于综合题,可以综合在诸如立体几何、解析几何、数列、函数
4、、不等式等内容中,既有计算又有证明,解决此类题目时,一定要建立合理的解题思路,对典型的证明方法一定要掌握。团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。 在“推理与证明”的内容中,“合情推理”是一种重要的归纳,主要从已知条件归纳出一个结论,可以是形式上的归纳,也可以是数学性质的归纳,一般以客观题的形式出现;演绎推理
5、则是逻辑思维能力的一个重要体现,试题中考查该部分内容的比例较大,命题时既可以使用选择题、填空题的形式,又可以在解答题型中,以证明题的形式进行考查,立体几何是考查“演绎推理”的最好教材。 “直接证明和间接证明”在高考中一般也不会直接命题,仍然是以其他知识为载体,在考查其他知识的同时,考查本部分内容,是每年高考的考查重点,几乎涉及数学的各方面知识,代表着研究性命题的发展趋势,选择题、填空题、解答题都可能涉及。该部分命题的方向主要在函数、三角恒等变换、数列、立体几何、解析几何等方面,主要以考查“直接证明”中的综合法为主。 由于“数学归纳法”
6、仅限于与自然数有关的命题,故单独命题的可能性不大,多数以数列及不等式为载体来综合考查。高考常见的题型有:证明等式问题、证明不等式问题、证明整除问题和解决数列中的探究性问题等,但不排除在客观题中考查数学归纳法的原理和证明步骤。 【典例精析】 .考查类比推理 例1观察下列等式: , ……… 由以上等式推测到一个一般的结论: 对于, .团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。学生会成立以来,学生会搞了一
7、系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。 答案: 【解析】这是一种需类比推理方法破解的问题,结论由二项构成,第二项前有,二项指数分别为,因此对于, 。 2.考查归纳推理 例3五位同学围成一圈依序循环报数,规定: ①第一位同学首次报出的数为1.第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和; ②若报出的是为3的倍数,则报该数的同学需拍手一次, 当第30个数被报出时,五位同学拍手的总次数为 答案:7次 【解析】这样得到的数列这是历史上著名的数列,叫斐波那
8、契数列.寻找规律是解决问题的根本,否则,费时费力.首先求出这个数列的每一项除以3所得余数的变化规律,再求所求就比较简单了.团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办
此文档下载收益归作者所有