概率统计在经典统计物理中的应用

概率统计在经典统计物理中的应用

ID:27025981

大小:363.70 KB

页数:7页

时间:2018-11-30

概率统计在经典统计物理中的应用_第1页
概率统计在经典统计物理中的应用_第2页
概率统计在经典统计物理中的应用_第3页
概率统计在经典统计物理中的应用_第4页
概率统计在经典统计物理中的应用_第5页
资源描述:

《概率统计在经典统计物理中的应用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、概率统计在经典统计物理中的应用概率论是现代数学的一个重要学科。一方面,他有丰富的数学理论,与其他数学学科有深入的相互渗透。另一方面,它与自然科学、技术科学、管理科学、经济科学以至人文科学有广泛的交叉。很多问题都可以归结为概率模型,应用概率论和随机过程的理论和方法加以研究.并且这些问题也向概率论提出了新的重要研究课题。经典统计物理学便是这样一个新的概率论分支。统计物理学根据对物质微观结构及微观粒子相互作用的认识,用概率统计的方法,对由大量粒子组成的宏观物体的物理性质及宏观规律作出微观解释的理论物理学分支。下面我们分别以麦克斯韦气体分

2、子速率分布律、麦克斯韦-波尔兹曼统计分布、理想气体的温度公式和压强公式为例,说明概率统计在经典统计物理中的应用。1.麦克斯韦气体分子速率分布律麦克斯韦用概率论证明了在平衡态下,理想气体分子速度分布是有规律的,这个规律叫做麦克斯韦速度分布率,若不考虑分子速度的方向,则叫麦克斯韦速率分布率。能量为的分子概率密度是,(1-1)其中是归一化常数,而分子能量是.(1-2)由归一化条件得,相体积元=.不失一般性,设气体体积为单位体积,则积分.7利用积分公式,得.于是有.定义:,(1-3)则有.(1-4)所以,函数是平衡态理想气体中分子按速率分

3、布的概率密度函数,叫做麦克斯韦气体分子速率分布律(Maxwelldistributionlawofspeedofgasmolecules),表示速率附近单位速率间隔内的分子数占气体总分子数的比例.例如,若气体总分子数为,则速率附近速率间隔内的分子数是.为简便起见,可将函数写成,(1-5)其中,,其函数曲线如图1所示.OO图1图2除满足归一化条件外,函数还具有以下特点:(1),;7(2)令=0,得最概然速率:.(1-6)即是函数的最大值,如图1所示.式中R和µ分别为普适常量和分子的摩尔质量。最概然速率表示对所有的相同速率区间而言,在

4、含有速率的那个区间内的分子占总分子数的百分比最大。(3)由(1-3)和(1-6)式可知,当气体温度上升时,或用分子质量较小的气体代替分子质量较大的气体做实验,的函数曲线将右移并变得平缓,如图2所示。2.气体分子的平均速率我们知道,气体处于平衡态,其分子的速率有大有小,服从Maxwell气体分子速率分布律.所以,气体分子的平均速率是.将代入上式做分部积分,得======,即理想气体速率从0到∞整个区间内的算术平均速率为==.(2-1)3.物理统计规律之麦克斯韦-波尔兹曼统计分布(M-B分布)麦克斯韦-波尔兹曼统计分布是研究近独立经典

5、粒子按能量的最概然分布。设有一个由个相同粒子组成的系统,其中每个粒子可以被看成一个子系统.7如果粒子之间的相互作用足够弱,则可以忽略它们之间的相互作用能,这样的系统就叫做近独立粒子系统(nearindependentparticlesystem),而系统的能量等于每个粒子的能量的和:.(3-1)在由相同粒子组成的近独立粒子系统中,每个粒子具有相同的子相空间,系统中的个粒子可以同时用一个子相空间来描述。这样,在这个子相空间中就同时有个相点,个相点的一种分布表示系统的一个微观态.系统有多少可能的微观态,就有多少种分布方式。为了计算系统

6、一个宏观态包含的微观态数目,把子相空间中个相点可能出现的区域划分为个微小区域:,(3-2),划分的原则是同在一个微小区域内的粒子具有近似相等的能量,记作,一个微小区域叫做一个相格(phasecell).假设系统处于某个宏观态时,相格内有个粒子,即粒子数按相格的分布是=().显而易见,粒子数按相格的分布应满足下面的总粒子数和总能量条件:,.(3-3)设相格内有个可供粒子占据的态(),即有个相点.由于子相空间中的相点是均匀分布的,相格内每个粒子态占有的相体积=是一个常数.经典理论对粒子占据微观态没有限制,因此,相格内每个粒子可占据的微

7、观态数都是个,而个粒子占据个微观态的方式有种.这样,当粒子数按相格的分布给定时,全部粒子占据微观态的方式共有种.注意,现在只是给定了各个相格中的粒子数,还需要考虑是哪些粒子占据了哪些微观态.7经典理论为粒子是可以分辨的,因此,在给定了各个相格中的粒子数的条件下,粒子的组合数是.上式是这样得到的:若不管粒子在哪个相格,全部粒子的排列数是扣除各个相格内粒子的排列数,就得到上式.所以,当系统处于某个宏观态,即当粒子数按相格的分布给定时,该宏观态包含的微观态数目是.(3-4)(3-4)式表明,宏观态包含的微观态数目是粒子数按相格的分布的函

8、数,记作.统计物理学的基本假设是:孤立系统的各个微观态出现的概率相等.因此,粒子数按相格的最概然分布就是微观态数最大的分布.为求得最概然分布,对(3-4)取对数:.为取极大值,令=0.(3-5)对斯特令公式(Stirlingformula)取对数:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。