5、,有,就称是二元函数在点的极限。记为或。注:(1)和一元函数的情形一样,如果,则当以任何点列及任何方式趋于时,的极限是;反之,以任何方式及任何点列趋于时,的极限是。但若在某一点列或沿某一曲线时,的极限为,还不能肯定在的极限是。所以说,这里的“”或“”要比一元函数的情形复杂得多,下面举例说明。例:设二元函数,讨论在点的的二重极限。例:设二元函数,讨论在点的二重极限是否存在。例:,讨论该函数的二重极限是否存在。二元函数的极限较之一元函数的极限而言,要复杂得多,特别是自变量的变化趋势,较之一元函数要复杂。例:。例:① ② ③ 例:求在(0,0)点的极限,若用极坐标替换则为(注