欢迎来到天天文库
浏览记录
ID:26867301
大小:51.00 KB
页数:5页
时间:2018-11-29
《小学数学教学中渗透数学思想方法的实践与思考》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、小学数学教学中渗透数学思想方法的实践与思考 数学(mathematics或maths),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。 摘要:小学数学是培养学生数学能力和数学基础的关键时期,在这一阶段教师要不断加强学生学习数学的兴趣,通过教学中渗透数学思想让学生认识学习数学知识的重要性。数学思想方法是从某些数学具体的认知过程中提炼出来一系列的学习观点,其揭示了数学学科发展过程中的一些普遍规律始,直接支配着数学学习者的实践活动,是解决数学问
2、题的重要手段。小学数学教师在教学过程中,选择适当的方法,向学生渗透数学思想方法,培养学生形成总结、归纳、整理和提炼的习惯,逐渐形成理想认知,更好的指导学生学习数学知识。 关键词:小学数学实践数学思想方法 新的小学数学课程标准中明确指出,教师要处理教学和学生自主学习之间的关系,通过采取有效的措施,启发学生自主思考,引导学生主动探究知识,让学生真正的理解和掌握基本数学知识和技能。由此我们可以看出,数学思想方法在数学教育中渗透是十分重要的。学生掌握了数学思想方法后就如同拿到了开启数学知识大门的钥匙,可以帮助学生更好的理解数学、学习数学,最终提高小学数学质量,学生的学习主动性也会大大提升
3、。 一、小学数学教学渗透数学思想方法的必要性分析 数学思想方法是数学学科的精髓,学生掌握了这些数学方法数学学习将会更加轻松自如,并能够持续提升学生学习数学的兴趣和爱好。现阶段虽然新课程标准要求教师积极应用全新的教学方法和教学理念,但是教师还是比较倾向于灌输教学,担心学生的数学知识学习的不够多而影响升学考试成绩。传统的教学方法虽然能够让学生掌握大量的数学知识,但是学生却不知道该如何灵活运用这些知识,教师忽视了教学思想方法的渗透,就会使学生解决数学问题时遇到极大的困难,因此,加强数学思想方法渗透对于小学数学教学来说极其重要。 二、常见的接种数学思想方法分析 首先,转化思想。这种思
4、想方法是数学学习最基本的一种方法,其主要是将不同类型的数学元素转变为相同的数学元素,将困难的数学知识化繁为简,将未知的数学难题转变为已知知识,从而灵活解决问题。在讲解小数和分数加减法时,学生很容易迷糊,在教学中教师可以提醒学生经分数化简小数或者小数变为分数加减就会更加容易。例如可以将0、5+1/5转化为0、5+0、2,这样可以让数学难题变得更加简单,更容易解决;其次,数形结合思想。数形结合是数学思想中非常常见的一种思想方法,其在多学科教学中都被广泛的应用,如讲解小时、分钟和秒之间的关系时可以将钟表联系起来,讲解正方体边的性质时,可以将现实中的盒子联系起来。运用数形结合的方法就可以将抽
5、象的问题具体化,有利于学生解决问题;最后,分类思想法。所谓的分裂思法就是将不同的对象按照固定的一个方面进行划分,进而把握好其中的相似点。例如对三角形进行划分,可以按照角度和边的特点将三角形划分为直角三角形、锐角三角形和钝角三角形。通过采用分类思想能够帮助学生更好的理解三角形的特点,进而让学生对过去所学习的知识进行分类整理和归纳,保证学生全面掌握相关知识。 三、小学数学课堂教学渗透数学思想方法的途径分析 1、在基础知识形成过程中感悟数学思想方法 小学数学课程标准虽然对数学思想方法提出了具体的教学要求,但是其主要按照小学生学习数学知识的特点和数学学科的发展规律进行编排,教材中呈现的
6、既定的概念、知识和规律,是一种有形的数学思想。而无形的数学思想主要分散在数学内容的各个部分当中,往往需要我们进行总结才能发现。在小学数学教学过程中,学生数学思想方法形成是一个循序渐进的过程,在学习初期学生对于思想方法认识还处于感性方面,需要经过多次、反复的体验,才能升华到理性层面。因此,在教学过程中,教师要善于抓住有利时机,帮助学生进行归纳和总结,让学生形成理性认知,这样才能经数学课讲活、讲懂、讲深。例如,学生在学习分数初期,教师可以利用多媒体课件演示,四个朋友去郊游,他们带了8个苹果、4瓶饮料和一个蛋糕,通过让学生讨论这样分配才能公平公正,帮助学生形成平等分配的概念,然后讨论采用数
7、学方式表示每个人分的蛋糕数量,从而引出分数的概念。这里主要应该到了数形结合的思想方法。 2、在技能训练中理解数学思想方法 在引导学生进行进行自主学习过程中,教师要善于把握教材编排的特点,培养学生挖掘教材内在规律,概括知识的能力。在具体教学过程中,要积极引导学生提出自己的疑问,探究解决问题的对策,通过让学生自主观察、实验、分析,得出最终的结果,发现其中存在的思想方法。例如在学习三角形和平行四边形面积计算过程中,安排学生进行一些组合图形的计算,通过图形的分
此文档下载收益归作者所有