机械动力学在机械系统及生活中的应用及其发展前景

机械动力学在机械系统及生活中的应用及其发展前景

ID:26844555

大小:18.64 KB

页数:4页

时间:2018-11-29

机械动力学在机械系统及生活中的应用及其发展前景_第1页
机械动力学在机械系统及生活中的应用及其发展前景_第2页
机械动力学在机械系统及生活中的应用及其发展前景_第3页
机械动力学在机械系统及生活中的应用及其发展前景_第4页
资源描述:

《机械动力学在机械系统及生活中的应用及其发展前景》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、机械动力学在机械系统及生活中的应用及其发展前景41131023崔旭现代机械设计已从原来发展较成熟的、为实现某种功能的运动学设计,逐渐转向了以改善和提高机器运动和动力特性为主要目的的动力学综合。机构动力平衡、弹性激斗动力学、含间隙机构动力学等,已成为现代机械动力学领域的重要前沿课题和新分支,在近一二十年有了长足发展。国际上对此开展了全面、深入的研究,取得了丰硕成果。我国学者在这领域也进行了一系列的研究,并已取得了重要的进展,尤其是在机构动平衡理论及方法,连杆机构弹性动力学综合和含间隙机构动力学分析等方面的理论研究成果,已达到国际先进水平。总的来说,机械动力学研究已经发展到了一定阶段。 机械动力

2、学是机械原理的主要组成部分,它主要研究机械在运转过程中的受力情况,机械中各构件的质量与机械运动之间的相互关系等等,是现代机械设计的理论基础。以下针对动力学的研究内容及其应用和发展前景进行论述。 一、机械动力学主要研究的内容   1.在已知外力作用下求具有确定惯性参量的机械系统的真实运动规律。为了简化问题,常把机械系统看作具有理想、稳定约束的刚体系统处理。对于单自由度的机械系统,用等效力和等效质量的概念可以把刚体系统的动力学问题转化为单个刚体的动力学问题;对多自由度机械系统动力学问题一般用拉格朗日方程求解。机械系统动力学方程常常是多参量非线性微分方程,只在特殊条件下可直接求解,一般情况下需要用

3、数值方法迭代求解。许多机械动力学问题可借助电子计算机分析。计算机根据输入的外力参量、构件的惯性参量和机械系统的结构信息,自动列出相应的微分方程并解出所要求的运动参量。    2.分析机械运动过程中各构件之间的相互作用力。这些力的大小和变化规律是设计运动副的结构、分析支承和构件的承载能力以及选择合理润滑方法的依据。在求出机械真实运动规律后可算出各构件的惯性力,再依据达朗伯原理用静力学方法求出构件间的相互作用力。    3.研究回转构件和机构平衡的理论和方法。平衡的目的是消除或减少作用在机械基础上周期变化的振颤力和振颤力矩。对于刚性转子的平衡已有较成熟的技术和方法:对于工作转速接近或超过转子自身

4、固有频率的挠性转子平衡问题,不论是理论和方法都需要进一步研究。    平面或空间机构中包含有往复运动和平面或空间一般运动的构件。其质心沿一封闭曲线运动。根据机构的不同结构,可以应用附加配重或附加构件等方法全部或部分消除其振颤力。但振颤力矩的全部平衡较难实现。优化技术应用于机构平衡领域已经取得较好的成果。    4.研究机械运转过程中能量的平衡和分配关系。这包括:机械效率的计算和分析;调速器的理论和设计;飞轮的应用和设计等。    5.机械振动的分析研究是机械动力学的基本内容之一。它已发展成为内容丰富、自成体系的一门学科。    6.机构分析和机构综合一般是对机构的结构和运动而言,但随着机械运

5、转速度的提高,机械动力学已成为分析和综合高速机构时不可缺少的内容。 二、机械动力学在机械系统和生活中的应用 1.分子机械动力学的研究 作为纳米科技的一个分支,分子机械和分子器件的研究工作受到普遍关注。如何针对纳机电系统(NEMS)器件建立科学适用的力学模型,成为解决纳米尺度动力学问题的瓶颈。分子机械是极其重要的一类NEMS器件.分为天然的与人工的两类。人工分子机械是通过对原子的人为操纵,合成、制造出具有能量转化机制或运动传递机制的纳米级的生物机械装置。由于分子机械具有高效节能、环保无噪、原料易得、承载能力大、速度高等特点,加之具有纳米尺度,故在国防、航天、航空、医学、电子等领域具有十分重要的

6、应用前景,因而受到各发达国家的高度重视。目前已经成功研制出多种分子机械,如分子马达、分子齿轮、分子轴承等。但在分子机械实现其工程化与规模化的过程中, 由于理论研究水平的制约,使分子机械的研究工作受到了进一步得制约。 分子机械动力学研究的关键是建立科学合理的力学模型。目前,分子机械动力学采用的力学模型有两类,第一类是建立在量子力学、分子力学以及波函数理论基础上的离散原子作用模型。在该模型中,依据分子机械的初始构象,将分子机械系统离散为大量相互作用的原子,每个原子拥有质量,所处的位置用几何点表示。通过引入键长伸缩能,键角弯曲能,键的二面角扭转能,以及非键作用能等,形成机械的势能面,使系统总势能最

7、小的构象即为分子机械的稳定构象。采用分子力学和分子动力学等方法,对分子机械的动态构象与运动规律进行计算。从理论上讲,该模型可以获得分子机械每个时刻精确的动力学性能,但计算T作量十分庞大,特别是当原子数目较大时,其计算工作量是无法承受的。第二类模型为连续介质力学模型。该模型将分子机械视为桁架结构,原子为桁架的节点,化学键为连接节点的杆件,然后采用结构力学中的有限元方法进行动力学分析。该模型虽然克服了第一类模型计

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。