高考二轮小专题--圆锥曲线题型归纳

高考二轮小专题--圆锥曲线题型归纳

ID:26753742

大小:2.76 MB

页数:31页

时间:2018-11-29

高考二轮小专题--圆锥曲线题型归纳_第1页
高考二轮小专题--圆锥曲线题型归纳_第2页
高考二轮小专题--圆锥曲线题型归纳_第3页
高考二轮小专题--圆锥曲线题型归纳_第4页
高考二轮小专题--圆锥曲线题型归纳_第5页
资源描述:

《高考二轮小专题--圆锥曲线题型归纳》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、完美WORD格式.整理高考二轮小专题:圆锥曲线题型归纳基础知识:1.直线与圆的方程;2.椭圆、双曲线、抛物线的定义与标准方程公式;3.椭圆、双曲线、抛物线的几何性质等相关知识:、、、、、渐近线。基本方法:1.待定系数法:求所设直线方程中的系数,求标准方程中的待定系数、、、、等等;2.齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题;3.韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。要注意:如果方程的根很容易求出,就不必用韦达定理,而直接计算出两个根;4.点差法:弦中点问题,端点坐标设而不求。也叫五条等式法:点满足方程两个、中点坐标公式两个、斜率公式一

2、个共五个等式;5.距离转化法:将斜线上的长度问题、比例问题、向量问题转化水平或竖直方向上的距离问题、比例问题、坐标问题;基本思想:1.“常规求值”问题需要找等式,“求范围”问题需要找不等式;2.“是否存在”问题当作存在去求,若不存在则计算时自然会无解;3.证明“过定点”或“定值”,总要设一个或几个参变量,将对象表示出来,再说明与此变量无关;4.证明不等式,或者求最值时,若不能用几何观察法,则必须用函数思想将对象表示为变量的函数,再解决;5.有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验;6.大多数问题只要忠实、准确地将题目每个条件和要求表达出

3、来,即可自然而然产生思路。一、求直线、圆锥曲线方程、离心率、弦长、渐近线等常规问题7.【2015高考重庆,理10】设双曲线(a>0,b>0)的右焦点为1,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是    (  )A、B、C、D、【答案】A【考点定位】双曲线的性质..专业资料分享.完美WORD格式.整理【名师点晴】求双曲线的渐近线的斜率取舍范围的基本思想是建立关于的不等式,根据已知条件和双曲线中的关系,要据题中提供的条件列出所求双曲线中关于的不等关系,解不等式可得所求范围.解题中要注意椭圆与

4、双曲线中关系的不同.10.【2015高考浙江,理5】如图,设抛物线的焦点为,不经过焦点的直线上有三个不同的点,,,其中点,在抛物线上,点在轴上,则与的面积之比是()A.B.C.D.【答案】A.【考点定位】抛物线的标准方程及其性质【名师点睛】本题主要考查了抛物线的标准方程及其性质,属于中档题,解题时,需结合平面几何中同高的三角形面积比等于底边比这一性质,结合抛物线的性质:抛物线上的点到准线的距离等于其到焦点的距离求解,在平面几何背景下考查圆锥曲线的标准方程及其性质,是高考中小题的热点,在复习时不能遗漏相应平面几何知识的复习.12.【2015高考北京,理10】已知双曲线的一条渐近线为,则.

5、【答案】【解析】双曲线的渐近线方程为,,,则.专业资料分享.完美WORD格式.整理【考点定位】本题考点为双曲线的几何性质,正确利用双曲线的标准方程,求出渐近线方程,利用已给渐近线方程求参数.【名师点睛】本题考查双曲线的几何性质,重点考查双曲线的渐近线方程,本题属于基础题,正确利用双曲线的标准方程,求出渐近线方程,求渐近线方程的简单方法就是把标准方程中的“1”改“0”,利用已知渐近线方程,求出参数的值.11.【2015高考新课标2,理11】已知A,B为双曲线E的左,右顶点,点M在E上,∆ABM为等腰三角形,且顶角为120°,则E的离心率为()A.B.C.D.【答案】D【解析】设双曲线方程

6、为,如图所示,,,过点作轴,垂足为,在中,,,故点的坐标为,代入双曲线方程得,即,所以,故选D.【考点定位】双曲线的标准方程和简单几何性质.【名师点睛】本题考查双曲线的标准方程和简单几何性质、解直角三角形知识,正确表示点的坐标,利用“点在双曲线上”列方程是解题关键,属于中档题.18.【2015高考新课标2,理20】(本题满分12分)已知椭圆,直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为..专业资料分享.完美WORD格式.整理(Ⅰ)证明:直线的斜率与的斜率的乘积为定值;(Ⅱ)若过点,延长线段与交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由.【答案】(Ⅰ

7、)详见解析;(Ⅱ)能,或.【解析】(Ⅰ)设直线,,,.将代入得,故,.解得,.因为,,,所以当的斜率为或时,四边形为平行四边形.【考点定位】1、弦的中点问题;2、直线和椭圆的位置关系.【名师点睛】(Ⅰ)题中涉及弦的中点坐标问题,故可以采取“点差法”或“韦达定理”两种方法求解:设端点的坐标,代入椭圆方程并作差,出现弦的中点和直线的斜率;设直线的方程同时和椭圆方程联立,利用韦达定理求弦的中点,并寻找两条直线斜率关系;(Ⅱ)根据(Ⅰ)中结论,设直线方

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。