基于bp神经网络的上市公司信用风险评价

基于bp神经网络的上市公司信用风险评价

ID:26625525

大小:50.00 KB

页数:4页

时间:2018-11-28

基于bp神经网络的上市公司信用风险评价  _第1页
基于bp神经网络的上市公司信用风险评价  _第2页
基于bp神经网络的上市公司信用风险评价  _第3页
基于bp神经网络的上市公司信用风险评价  _第4页
资源描述:

《基于bp神经网络的上市公司信用风险评价 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、基于BP神经网络的上市公司信用风险评价【论文关键词】BP神经网络 信用风险评价 主成分分析  【论文摘要】文章在建立上市公司信用风险评价指标体系的基础上,提出了用神经网络对上市公司进行信用评级的方法,并利用相关数据对模型进行了实证研究,取得了较好的结果。    一、引言    信用风险管理对于商业银行而言是一个永恒的主题,特别是东南亚金融危机后,更引起各国的关注和重视。无论银行还是中介机构都迫切需要利用新的技术和方法对企业信用状况做出较为准确的评价与决策。目前常用的统计方法有判别分析法、Logis

2、tic回归法及主成分分析法、聚类分析法等,由这些方法建立起来的统计模型确可对信用评级提供较具科学性的分析,但这些统计模型都存在如下缺陷:第一,所有的模型所采取的各种变量,不论是不是财务指标,都来自研究者的主观选取,很难断言没有重要变量被遗漏。第二,线性多元判别分析对变量的基本假设是多元正态分布,但许多实证资料大半违反此假设,又假设不同群组间的协方差矩阵相等,有违两组样本来自两个分立群体的直觉。第三,线性概率模型无法符合“概率”的定义要求,存在先天瑕疵。自20世纪80年代末,西方发达国家将人工智能引

3、入银行业,协助银行进行贷款决策,这其中,尤其人工神经网络在企业财务分析中显示了巨大的优势和潜力。在我们国家,无论是用统计方法,还是用神经网络技术来研究信用风险,目前都尚处于起步阶段。杨保安,李海(2001)利用BP神经网络对企业财务危机进行了预警研究;柳炳祥,盛昭翰(2002)利用粗神经网络对企业财务危机进行了分析;朱顺泉则对同一样本数据分别采用主成分分析和模糊综合评价方法研究了上市公司财务状况问题。本文将在朱顺泉文章样本数据的基础上,运用神经网络方法对公司信用评级做进一步的探讨。    二、样本

4、的选择与指标的选取    样本数据的来源如前面所述,将保持与朱顺泉文中的一致,以便进行比较。该样本数据是从《中国证券报》2000年4月4日披露的财务数据表中选取的20家公司、15个评价指标值。各项评价指标依次为:主营业务利润率(X1)、净资产收益率(X2)、总资产收益率(X3)、流动比率(X4)、速动比率(X5)、总资产周转率(X6)、存货周转率(X7)、应收账款周转率(X8)、固定资产周转率(X9)、股东权益周转率(X10)、经营活动现金流量与净利润比率(X11)、主营收入现金流量(X12)、净

5、利润增长率(X13)、长期负债比率(X14)、股东权益比率(X15)。由于指标体系中各指标均有不同的量纲,给评价带来许多困难,因此有必要将不同量纲的评价指标,通过适当变换,转化为无量纲的标准化指标。经标准化处理后的数据如表1所示。    三、基于BP算法的信用风险评价模型    BP算法是一种有监督的学习算法,它利用均方误差最小和梯度下降法来实现对网络连接权值和偏置权值的修正。其学习的基本思路是:先将各单元间的连接权和偏置权设置为一个小的随机数,然后选择一个训练样本,并计算样本的误差梯度。这涉及到

6、两个过程:一个是前向过程,将输入值通过各个单元的传递,直至输出单元得到网络的输出结果为止;另一个是反向过程:把实际输出值和期望输出值之间的误差通过输出层逐步返回到输入层,并调整连接权值和偏置权值,直至样本的实际输出值和期望输出值之间的误差小于预先给定的值为止。  现建立一个具有三层的BP网络来解决这一分类问题。网络的输入变量采用能反映企业偿债能力、赢利能力、发展能力等的15项指标来构成,相应地,神经网络结构中的输入层需要15个结点。对于输出层,我们取3个结点,用输出值(1,0,0),(0,1,0)

7、,(0,0,1)分别代表“信用好”、“信用一般”、“信用差”三种信用级别。隐层的结点一般应满足2n>m,其中n为隐层结点数,m为训练样本数。由于本文中样本数将取为15(其余5个样本用于仿真),这里n不妨取为5,即隐层有5个结点。该神经网络结构如图1所示。  根据图1的网络结构,我们可建立如下的基于BP算法的信用风险评价模型:  用向量表示为:Y=g{V〔g(atlab中的神经网络工具箱技术,当我们把最大训练步数设定为8000,误差指标设为0.02,学习率为0.01时,得到了表1所示的结果。继续运用

8、学习得到的artinT.Hagan:神经网络设计[M].机械工业出版社,2002.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。