抛物线及其标准方程

抛物线及其标准方程

ID:26618826

大小:3.67 MB

页数:8页

时间:2018-11-28

抛物线及其标准方程_第1页
抛物线及其标准方程_第2页
抛物线及其标准方程_第3页
抛物线及其标准方程_第4页
抛物线及其标准方程_第5页
资源描述:

《抛物线及其标准方程》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、拋物线及其标准方程一、教学目标1.理解拋物线的定义,掌握拋物线的标准方程及其推导。明确拋物线标准方程中的几何意义,能解决简单的求拋物线标准方程问题。2、通过对拋物线和椭圆、双曲线离心率的比较,体会三种圆锥曲线内在的区别和联系。3、熟练掌握求曲线方程的基本方法,通过四种不同形式标准方程的对比,培养学生分析、归纳的能力。4.营造亲切、和谐的氛围,以“趣”激学。引导学生用运动变化的观点发现问题、探索问题、解决问题,培养学生的创新意识,体会数学的简捷美、和谐美。培养合作学习的意识,体会成功带来的喜悦。发展数学

2、应用意识,认识数学的应用价值。二、教学重点和难点1.教学重点:拋物线的定义及其标准方程的推导。通过学生自主建立直角坐标系和对方程的讨论选择突出重点。2.教学难点:拋物线概念的形成。通过条件的画法设计,标准方程与二次函数的比较突破难点。三、教学过程设计(一)设置情景,导入新课(借助多媒体)先给出一张姚明的图片。(此时学生的兴趣来啦!)师:姚明是我们中国人的骄傲,我们要向他学习!大家都知道姚明的投篮非常精准!为什么呢?生:天赋、身高!生:勤奋练习!(再给出两张姚明的图片)生:与投篮时的弧线有关!生:这弧线

3、是抛物线!师:对!姚明有许多优越的先天条件,同时好的技术也是一个关键的因素,今天我们就着手研究这个内容。(进而引出本节研究的课题:抛物线及其标准方程)(二)引导探究,获得新知师:在初中我们已经从函数角度学过抛物线,那么,这一节课我们将冲破初中的界限从曲线和方程的角度来学习抛物线。师:前面,我们学习了椭圆和双曲线的相关知识,那么它们的联系和差异是什么?生:定义不一样!生:方程!椭圆是,双曲线是。师:还有吗?生:椭圆是封闭的,双曲线是开放的。师:这只是图象不同,为什么会这样呢?生:第二定义!就是它们到定点

4、的距离与到定直线的距离的比等于一个常数!生:这个常数是离心率!师:对啊!这是定性上的,定量上有不同吗?生:离心率不同,椭圆离心率的范围是,双曲线离心率的范围是。师:对了,可看成是它们的相同点,又是不同点!(打开几何画板)师:现在我慢慢拖动,大家认真观察图象。生:是椭圆,是双曲线。师:但你们有没观察到时的图象?生:抛物线!师:这抛物线是怎么画出来的啊!(课堂顿时一片寂静)师:那这条抛物线与什么有关?众生:!师:是什么意思?生:到定点的距离等于到定直线的距离!师:回答得很好!那你们能据此设计一种方案,画出

5、这样的点吗?(一段时间后,让学生汇报自己的设计方案,并用实物投影仪展示学生所画的图形,师生共同就方案的可行性进行论证。)(在直线上找特殊点)(在第一象限找特殊点)(在第一象限找所有点)师:同学们的设计让我们看到了这条曲线上的一个点,那么怎么画满足的图象呢?(课堂又一片寂静)(出示预先准备的圆锥曲线教具)师:现在我介绍这个教具的用法,将直尺与定直线重合,竖直固定在黑板上,再将磁铁固定在定点上,拉紧白线,就可以画出来了。谁上来试试?(两位学生积极上台板演)师:这两位同学表现非常好!这就是我们见过的拋物线!

6、师:接下来我也来演示下抛物线的形成过程。(打开几何画板软件)师:认真观察点的运动过程,你们有什么发现?(利用几何画板软件同步动态演示)生:和等于,所以点在运动时,始终等于。师:这位同学观察很敏锐,直接抓住关键地方!师:那这样画出来的图象也是?众生:抛物线!师:很好!师:以前我们是用描点法画出抛物线,那今天我们怎么画?众生:教具,电脑……师:现在变换教具的位置,那么画出的图象还是抛物线吗?众生:是。师:这说明了什么?生:画抛物线与位置无关。师:所以今天我们就巧妙地利用几何知识和计算机等方式画出了整个图象

7、。师:现在你们就可以归纳一下抛物线的定义了!生:到点的距离和到直线的距离相等的点的轨迹叫做拋物线。师:这样归纳完整吗?生:应该说,平面内到一个定点和到一条定直线的距离相等的点的轨迹叫做拋物线。生:还要注意定点不能在定直线上。师:为什么啊?师:如果这样,就只能找到一个点。师:说得很好!这里叫做拋物线的焦点,定直线叫做拋物线的准线。(三)深入探索,推导方程师:接下来你们试试推导拋物线的方程?(简单回顾求曲线方程的方法)。一段时间后,实物投影仪展示学生探讨的结果。(分组讨论,集中探索)1.以为原点,定直线所

8、在的直线为轴建立平面直角坐标系,此时得方程为:2.以为原点,过且垂直于定直线的直线为轴建立平面直角坐标系,此时得方程:3.以垂线段的中点为原点,所在的直线为轴建立平面直角坐标系,此时得方程:师:哪个好呢?生:方案3所得的方程更简洁!师:我们就把它叫做拋物线的标准方程,注意这里标准的规范是顶点在原点,图象关于轴对称。【活动设计】以原来的四人小组为单位,讨论建立直角坐标系的方案,一段时间后,各组交流,对可行的方案进行验证。师:现在请同学们增大点到直尺的距离,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。