欢迎来到天天文库
浏览记录
ID:26527574
大小:615.75 KB
页数:9页
时间:2018-11-27
《大数据在医疗行业的应用》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
大数据在医疗行业的应用医疗行业很早就遇到了海量数据和非结构化数据的挑战。在互联网大框架的结构下,大圣众包威客平台为你解读,作为一个行业的流行语,互联网+医疗的个性化服务,能给医疗保健工作者和消费者带来哪些真正的福利呢? 据相关专项研究指出,如果能排除体制障碍,大数据分析可以帮助美国医疗服务业一年创造3000亿美元的附加价值,重点集中于医疗服务业4大领域:临床业务、付款定价、研发、新商业模式、公众健康,涵盖了十多项应用场景。 领域一:临床操作 1.比较效果研究:大数据分析获取最佳性价比治疗方案 通过全面分析病人特征数据和疗效数据,然后比较多种干预措施的有效性,可以找到针对特定病人的最佳治疗途径。研究表明,对同一病人来说,医疗服务提供方不同,医疗护理方法和效果不同,成本上也存在很大差异。医疗护理系统实现CER,将有可能减少过度治疗(比如避免那些副作用比疗效明显的治疗方式),以及治疗不足。 2.临床决策支持系统:提高准确性,减少医疗事故率 临床决策支持系统可提高工作效率和诊疗质量。临床决策支持系统分析医生输入条目,比较其与医学指引不同地方,提醒医生防止潜在的错误,如药物不良反应。医疗服务提供方可以降低医疗事故率和索赔数,尤其是那些临床错误引起的医疗事故。大数据分析技术将使临床决策支持系统更智能,如可以使用图像分析和识别技术,识别医疗影像(X光、CT、MRI)数据,或者挖掘医疗文献数据建立医疗专家数据库,从而给医生提出诊疗建议。 3.医疗数据透明度:实现高效管理,降低成本 提高医疗过程数据的透明度,可以使医疗从业者、医疗机构绩效更透明,间接促进医疗服务质量提高。数据分析可以带来业务流程的精简,通过精益生产降低成本,找到符合需求的工作更高效的员工,从而提高护理质量并给病人带来更好的体验,也给医疗服务机构带来额外的业绩增长潜力。公开发布医疗质量和绩效数据还可以帮助病人做出更明智的健康护理决定,这也将帮助医疗服务提供方提高总体绩效,从而更具竞争力。 4.远程病人监控:慢性病患者高效照护 根据统计,中国各类慢性病患者超过3 亿人,尤其是我国进入老龄化时代以后,将存在非常大的照护缺口,远程病人监护系统对治疗慢性病患者非常有用。远程病人监护系统包括家用心脏监测设备、血糖仪,甚至还包括芯片药片,芯片药片被患者摄入后,实时传送数据到电子病历数据库。更多的好处是,通过对远程监控系统产生的数据的分析,可以减少病人住院时间,减少急诊量,实现提高家庭护理比例和门诊医生预约量的目标。 5.对病人档案的先进分析:做好疾病预防,减少医疗支出 在病人档案方面应用高级分析可以确定哪些人是某类疾病的易感人群。举例说,应用高级分析可以帮助识别哪些病人有患糖尿病的高风险,使他们尽早接受预防性保健方案。这些方法也可以帮患者从已经存在的疾病管理方案中找到最好的治疗方案。 领域二:付款/定价 1.自动化系统:更精准的医疗事故鉴定和索赔 利用自动化系统(例如机器学习技术)检测欺诈行为,检测索赔欺诈具有巨大的经济意义。通过一个全面的一致的索赔数据库和相应的算法,可以检测索赔准确性,查出欺诈行为。这种欺诈检测可以是追溯性的,也可以是实时的。在实时检测中,自动化系统可以在支付发生前就识别出欺诈,避免重大的损失。 2.基于卫生经济学和疗效研究的定价计划:基于效果付费 一些医疗支付方正在利用数据分析衡量医疗服务提供方的服务,并依据服务水平进行定价。医疗服务支付方可以基于医疗效果进行支付,他们可以与医疗服务提供方进行谈判,看医疗服务提供方提供的服务是否达到特定基准。 领域三:研发 1.预测建模:更低成本药物研发 医药公司在新药物的研发阶段,可以通过数据建模和分析,确定最有效率的投入产出比,从而配备最佳资源组合。模型基于药物临床试验阶段之前的数据集及早期临床阶段的数据集,尽可能及时地预测临床结果。评价因素包括产品的安全性、有效性、潜在的副作用和整体的试验结果。通过预测建模可以降低医药产品公司的研发成本。 2.提高临床试验设计的统计工具和算法 使用统计工具和算法,可以提高临床试验设计水平,并在临床试验阶段更容易地招募到患者。通过挖掘病人数据,评估招募患者是否符合试验条件,从而加快临床试验进程,提出更有效的临床试验设计建议,并能找出最合适的临床试验基地。 3.临床实验数据分析 分析临床试验数据和病人记录可以确定药品更多的适应症和发现副作用。在对临床试验数据和病人记录进行分析后,可以对药物进行重新定位,或者实现针对其他适应症的营销。实时或者近乎实时地收集不良反应报告可以促进药物警戒(药物警戒是上市药品的安全保障体系,对药物不良反应进行监测、评价和预防)。 4.个性化治疗:精准的治疗效果 通过对大型数据集(例如基因组数据)的分析发展个性化治疗。个性化医学可以改善医疗保健效果,比如在患者发 生疾病症状前,就提供早期的检测和诊断。很多情况下,病人用同样的诊疗方案但是疗效却不一样,部分原因是遗传变异。针对不同的患者采取不同的诊疗方案,或者根据患者的实际情况调整药物剂量,可以减少副作用。 领域四:新商业模式 1.汇总患者的临床记录和医疗保险数据集 汇总患者的临床记录和医疗保险数据集,并进行高级分析,将提高医疗支付方、医疗服务提供方和医药企业的决策能力。如,对医药企业来说,他们不仅可以生产出具有更佳疗效的药品,而且能保证药品适销对路。 2.网络平台和社区 另一个潜在的大数据启动的商业模型是网络平台和大数据,这些平台已经产生了大量有价值的数据:包括病人的问诊数据、医生的学习习惯等。 3.公众健康 大数据使用可改善公众健康监控。公共卫生部门可以通过覆盖全国的患者电子病历数据库,快速检测传染病,进行全面的疫情监测,并通过集成疾病监测和响应程序,快速进行响应。卫生部门可以更快地检测出新的传染病和疫情。通过提供准确和及时的公众健康咨询,将会大幅提高公众健康风险意识,同时也将降低传染病感染风险。所有的这些都将帮助人们创造更好生活。
此文档下载收益归作者所有
举报原因
联系方式
详细说明
内容无法转码请点击此处