2013年八年级下册数学数据的分析知识点复习

2013年八年级下册数学数据的分析知识点复习

ID:26482050

大小:55.00 KB

页数:6页

时间:2018-11-27

2013年八年级下册数学数据的分析知识点复习_第1页
2013年八年级下册数学数据的分析知识点复习_第2页
2013年八年级下册数学数据的分析知识点复习_第3页
2013年八年级下册数学数据的分析知识点复习_第4页
2013年八年级下册数学数据的分析知识点复习_第5页
资源描述:

《2013年八年级下册数学数据的分析知识点复习》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、2013年八年级下册数学数据的分析知识点复习!松阳中学八年级数学复习数据的分析知识点1.加权平均数:若在一组数字中,出现次,出现次,…,出现次,那么叫做、、…、的加权平均数。。其中,、、…、分别是、、…、它们的权权的理解:反映了某个数据在整个数据中的重要程度。权的表示方法:比、百分比、频数(人数、个数、次数等)。2.中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。3.众数:一组数据中出现次数最多的

2、数据就是这组数据的众数。4.平均数中位数众数的区别与联系相同点平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。不同点它们之间的区别,主要表现在以下方面。1)、定义不同平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。众数:在一组数据中出现次数最多的数叫做这组数据的众数。2)、求法不同平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。

3、中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。它的求出不需或只需简单的计算。众数:一组数据中出现次数最多的那个数,不必计算就可求出。3)、个数不同在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。在一组数据中,可能不止一个众数,也可能没有众数。4)、代表不同平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”。中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表

4、一组数据的“中等水平”。众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。5)、特点不同平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数。中位数:与数据的排列位置有关,某些数据的变动对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响。众数:与数据出现的次数有关,着眼于对各数据出现的频率的考察,其大小只与这组数据中的部分数据有关,不受极端值的影

5、响,其缺点是具有不惟一性,一组数据中可能会有一个众数,也可能会有多个或没有。6)、作用不同平均数:是统计中最常用的数据代表值,比较可靠和稳定,因为它与每一个数据都有关,反映出来的信息最充分。平均数既可以描述一组数据本身的整体平均情况,也可以用来作为不同组数据比较的一个标准。因此,它在生活中应用最广泛,比如我们经常所说的平均成绩、平均身高、平均体重等。中位数:作为一组数据的代表,可靠性比较差,因为它只利用了部分数据。但当一组数据的个别数据偏大或偏小时,用中位数来描述该组数据的集中趋势就比较合适。众数:作为一组数据的代表,可靠性也比较

6、差,因为它也只利用了部分数据。。在一组数据中,如果个别数据有很大的变动,且某个数据出现的次数最多,此时用该数据(即众数)表示这组数据的“集中趋势”就比较适合。5.极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差。6.方差:设有n个数据,各数据与它们的平均数的差的平方分别是,…,我们用它们的平均数,即用来衡量这组数据的波动大小,并把它叫做这组数据的方差。 当一组数据比较小时可以用公式计算。方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。标准差:方差的算术平方根,即并把它叫做这组数据的标准差.它也是一个用来衡量

7、一组数据的波动大小的重要的量.7.极差、方差和标准差的区别与联系:联系:极差、方差和标准差都是用来衡量 (或描述)一组数据偏离平均数的大小(即波动大小)的指标,常用来比较两组数据的波动情况。区别:极差是用一组数据中的最大值与最小值的差来反映数据的变化范围,主要反映一组数据中两个极端值之间的差异情况,对其他的数据的波动不敏感。方差是用“先平均,再求差,然后平方,最后再平均”的方法得到的结果,主要反映整组数据的波动情况,是反映一组数据与其平均值离散程度的一个重要指标,每个数年据的变化都将影响方差的结果,是一个对整组数据波动情况更敏感的

8、指标。在实际使用时,往往计算一组数据的方差,来衡量一组数据的波动大小。标准差实际是方差的一个变形,只是方差的单位

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。