圆锥曲线知识点总结

圆锥曲线知识点总结

ID:26444892

大小:281.31 KB

页数:4页

时间:2018-11-27

圆锥曲线知识点总结_第1页
圆锥曲线知识点总结_第2页
圆锥曲线知识点总结_第3页
圆锥曲线知识点总结_第4页
资源描述:

《圆锥曲线知识点总结》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、高中数学圆锥曲线选知识点总结一、椭圆1、定义:平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆.即:。这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.2、椭圆的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围且且顶点、、、、轴长短轴的长长轴的长焦点、、焦距对称性关于轴、轴、原点对称离心率e越小,椭圆越圆;e越大,椭圆越扁-4-二、双曲线1、定义:平面内与两个定点,的距离之差的绝对值等于常数(小于)的点的轨迹称为双曲线.即:。这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.2、双曲线的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方

2、程范围或,或,顶点、、轴长虚轴的长实轴的长焦点、、焦距对称性关于轴、轴对称,关于原点中心对称离心率,越大,双曲线的开口越阔渐近线方程5、实轴和虚轴等长的双曲线称为等轴双曲线.三、抛物线-4-1、定义:平面内与一个定点和一条定直线的距离相等的点的轨迹称为抛物线.定点称为抛物线的焦点,定直线称为抛物线的准线.2、抛物线的几何性质:标准方程范围顶点对称轴轴轴焦点准线方程离心率,越大,抛物线的开口越大焦半径通径过抛物线的焦点且垂直于对称轴的弦称为通径:焦点弦长公式3、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即.4、关于抛物线焦点弦的几个结论:

3、设为过抛物线焦点的弦,,直线的倾斜角为,则-4-⑴⑵⑶以为直径的圆与准线相切;⑷焦点对在准线上射影的张角为⑸四、直线与圆锥曲线的位置关系2.直线与圆锥曲线的位置关系:⑴.从几何角度看:(特别注意)要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。⑵.从代数角度看:设直线L的方程与圆锥曲线的方程联立得到。①.若=0,当圆锥曲线是双曲线时,直线L与双曲线的渐进线平行或重合;当圆锥曲线是抛物线时,直线L与抛物线的对称轴平行或重合。②.若,设。.时,直线和圆锥曲线相交于不同两点,相交。b.时,直线和

4、圆锥曲线相切于一点,相切。c.时,直线和圆锥曲线没有公共点,相离。五、弦长问题:直线与圆锥曲线相交时的弦长问题是一个难点,化解这个难点的方法是:设而不求,根据根与系数的关系,进行整体代入。即当直线与圆锥曲线交于点,时,则====-4-

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。