资源描述:
《数列高考常见题型分类汇总》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、数列通项与求和一、数列的通项方法总结:对于数列的通项的变形,除了常见的求通项的方法,还有一些是需要找规律的,算周期或者根据图形进行推理。其余形式我们一般遵循以下几个原则:①对于同时出现,,的式子,首先要对等式进行化简。常用的化简方法是因式分解,或者同除一个式子,同加,同减,取倒数等,如果出现分式,将分式化简成整式;②利用关系消掉(或者),得到关于和的等式,然后用传统的求通项方法求出通项;③根据问题在等式中构造相应的形式,使其变为我们熟悉的等差数列或等比数列;④对于出现或(或更高次时)应考虑因式分解,最常见的为二次函数十字相
2、乘法,提取公因式法;遇到时还会两边同除.1.规律性形式求通项1-1.数列{an}满足an+1=,若a1=,则a2016的值是( )A.B.C.D.1-2.分形几何学是美籍法国数学家伯努瓦•B•曼德尔布罗特(BenoitB.Mandelbrot)在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路.下图按照的分形规律生长成一个树形图,则第12行的实心圆点的个数是( )A.55B.89C.144D.2331-3.如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第
3、n行有n个数且两端的数均为(n≥2),每个数是它下一行左右相邻两数的和,如,,11,…,则第10行第4个数(从左往右数)为( )A.B.C.D.2.出现,,的式子1-4.正项数列{an}的前项和{an}满足:(1)求数列{an}的通项公式an;(2)令,数列{bn}的前项和为.证明:对于任意的,都有.1-5.设数列的前项和为.已知,,.(1)求的值;(2)求数列的通项公式.111-6.已知首项都是1的两个数列,满足.(1)令,求数列的通项公式;(2)若,求数列的前项和.牛刀小试:1.已知数列{}的前n项和为Sn,=1,且
4、,数列{}满足,,其前9项和为63.(1)求数列数列{}和{}的通项公式;2.已知数列的前n项和为,且(1)求的通项公式;(2)设恰有4个元素,求实数的取值范围.113.需构造的(证明题)1-7.已知数列的前项和为,且满足,.(1)求证:是等差数列;(2)求表达式;1-8.设数列{an}的前n项和为Sn,且首项a1≠3,an+1=Sn+3n(n∈N*).(1)求证:{Sn﹣3n}是等比数列;(2)若{an}为递增数列,求a1的取值范围.牛刀小试1.已知数列{}中,,.(1)证明:数列是等比数列;(2)求数列的前n项和为.1
5、12.数列{}中,1,.(1)求证:数列{}是等差数列;二、数列求和与放缩数列求和的考察无外乎错位相减、裂项相消或者是分组求和等,但有一些通项公式需要化简才可以应用传统的方法进行求和。对于通项公式是分式形式的一般我们尝试把“大”分式分解成次数(分母的次数)相等的“小”分式,然后应用裂项相消的方法进项求和。放缩,怎么去放缩是重点,一般我们不可求和的放缩为可求和的,分式形式,分母是主要化简对象。2-1.数列满足.(1)设,求数列的通项公式.(2)设,数列的前n项和为,不等式对一切成立,求m的范围.2-2.设数列满足且(1)求的
6、通项公式;(2)设112-32-42-5牛刀小试:111.已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.(1)求数列{an}的通项公式;(2)令bn=(-1)n-1,求数列{bn}的前n项和Tn.三、数列与不等式问题在这类题目中一般是要证明,一般思路有两种:1.若{an}可求和,则可直接求出其和,再转化为,而后一般转化为函数,或单调性来比较大小;2.若{an}不可求和,则利用放缩法转化为可求和数列,再重复1的过程。1.应用放缩法证明,将不规则的数列变成规则的数列,将其放大或是缩小。但如果出界
7、了怎么办(放的太大或缩的太小),一般情况下,我们从第二项开始再放缩,如果还大则在尝试从第三项开始放缩。2.应用数列单调性求数列中的最大或最小项。我们一般将数列中的看做自变量,看做因变量,用函数部分求最值方法来求数列的最值;或者可以利用做商比较大小(一般出现幂时采取这个方法);也可相减做差求单调性。3-1.设各项均为正数的数列的前项和为,且满足,.(1)求的值;(2)求数列的通项公式;(3)证明:对一切正整数,有.113-2.记公差不为0的等差数列的前项和为,,成等比数列.(1)求数列的通项公式及;(2)若,n=1,2,3,
8、…,问是否存在实数,使得数列为单调递减数列?若存在,请求出的取值范围;若不存在,请说明理由.牛刀小试:1.数列的前项和为,已知,().(1)求;(2)求数列的通项;(3)设,数列的前项和为,证明:().2.设数列的前项和为.已知,,.(1)求的值;11(2)求数列的通项公式;(3)证明:对一切正整数,有