欢迎来到天天文库
浏览记录
ID:26402307
大小:271.35 KB
页数:67页
时间:2018-11-26
《二十世纪数学概观》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二十世纪数学概观(第三次数学危机)二十世纪纯粹数学已经不再仅仅是代数、几何、分析等经典学科的集合,而已成为分支众多的、庞大的知识体系。它的发展趋势或特点:(1)更高的抽象性(2)更强的统一性(3)更深入的基础探讨是二十世纪上半叶德国乃至全世界最伟大的数学家之一。他在横跨两个世纪的六十年的研究生涯中,几乎走遍了现代数学所有前沿阵地,从而把他的思想深深地渗透进了整个现代数学。希尔伯特(D.Hilbert.David,1862~1943),德国数学家。大卫·希尔伯特,1862年1月23日出生在东普鲁士的哥尼斯堡。他一直在
2、家乡上学,1885年取得博士学位,1886年就任哥尼斯堡大学讲师。1888年因为解决了不变式理论中著名的“哥尔丹问题”开始在数学界崭露头角,1891年他升任副教授,1893年升任教授。1895年,他应克莱因之邀,任哥丁根大学教授,由此开辟了哥丁根大学的黄金时代。由于他的影响,哥丁根成为世界数学的中心,繁盛了三、四十年,希尔伯特领导的数学学派是19世纪末20世纪初数学界的一面旗帜,希尔伯特被称为“数学界的无冕之王”。希尔伯特是二十世纪最有影响的数学家,他不仅是数学上一些分支的公认权威,而且恐怕也是最后一位在几乎所有数
3、学领域中都做出伟大贡献的全才。一、新世纪的序幕1900年8月,德国数学家希尔伯特在巴黎国际数学家大会上作了题为《数学问题》的著名讲演。他的讲演是这样开始的:“我们当中有谁不想揭开未来的帷幕,看一看今后的世纪里我们这门科学发展的前景和奥秘呢?我们下一代的主要数学思潮将追求什么样的特殊目标?在广阔而丰富的数学思想领域,新世纪将会带来什么样的方法和成果?”希尔伯特在讲演的前言和结束语中,对各类数学问题的意义、源泉和研究方法发表了许多精辟的见解,而整个演说的主题,则是他根据19世纪数学研究的成果和发展趋势而提出的23个数学
4、问题。这些问题涉及现代数学的许多重要领域。一个世纪以来,这些问题一直激发着数学家们浓厚的研究兴趣。1976年,在美国数学家评选的自1940年以来美国数学的十大成就中,有三项就是希尔伯特第1、第5、第10问题的解决。由此可见,能解决希尔伯特问题,是当代数学家的无上光荣。1975年,在美国伊利诺斯大学召开的一次国际数学会议上,数学家们回顾了四分之三个世纪以来希尔伯特23个问题的研究进展情况。当时统计,约有一半问题已经解决了,其余一半的大多数也都有重大进展。下面摘录的是1987年出版的《数学家小辞典》以及其它一些文献中收
5、集的希尔伯特23个问题及其解决情况:1.连续统假设1874年,康托猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设。1938年,哥德尔证明了连续统假设和世界公认的策梅洛--弗伦克尔集合论公理系统的无矛盾性。1963年,美国数学家科亨证明连续假设和策梅洛--伦克尔集合论公理是彼此独立的。因此,连续统假设不能在策梅洛--弗伦克尔公理体系内证明其正确性与否。希尔伯特第1问题在这个意义上已获解决。2.算术公理的相容性欧几里得几何的相容性可归结为算术公理的相容性。希尔伯特曾提出用形式主义计划的证明论方法加以
6、证明。1931年,哥德尔发表的不完备性定理否定了这种看法。1936年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性。1988年出版的《中国大百科全书》数学卷指出,数学相容性问题尚未解决。3.两个等底等高四面体的体积相等问题问题的意思是,存在两个等边等高的四面体,它们不可分解为有限个小四面体,使这两组四面体彼此全等。M.W.德恩1900年即对此问题给出了肯定解答。4.两点间以直线为距离最短线问题此问题提得过于一般。满足此性质的几何学很多,因而需增加某些限制条件。1973年,苏联数学家波格列洛夫宣布,在对
7、称距离情况下,问题获得解决。《中国大百科全书》说,在希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决。5.一个连续变换群的李氏概念,定义这个群的函数不假定是可微的。这个问题简称连续群的解析性,即:是否每一个局部欧氏群都有一定是李群?中间经冯·诺伊曼(1933,对紧群情形)、邦德里雅金(1939,对交换群情形)、谢瓦荚(1941,对可解群情形)的努力,1952年由格利森、蒙哥马利、齐宾共同解决,得到了完全肯定的结果。6.物理学的公理化希尔伯特建议用数学的公理化方法推演出全部物理,首先是概率和力
8、学。1933年,苏联数学家柯尔莫哥洛夫实现了将概率论公理化。后来在量子力学、量子场论方面取得了很大成功。但是物理学是否能全盘公理化,很多人表示怀疑。7.某些数的无理性与超越性1934年,A.O.盖尔方德和T.施奈德各自独立地解决了问题的后半部分,即对于任意代数数α≠0,1,和任意代数无理数β证明了αβ的超越性。8.素数问题包括黎曼猜想、哥德巴赫猜想及孪生素数
此文档下载收益归作者所有