《bet孔径分布》word版

《bet孔径分布》word版

ID:26303190

大小:180.18 KB

页数:7页

时间:2018-11-26

《bet孔径分布》word版_第1页
《bet孔径分布》word版_第2页
《bet孔径分布》word版_第3页
《bet孔径分布》word版_第4页
《bet孔径分布》word版_第5页
资源描述:

《《bet孔径分布》word版》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、超细粉表面特性的表征通常用比表面和孔隙度(Porosity)两个指标,比表面指单位质量粉体的总表面积,孔隙度包括总孔体积、平均孔径、孔径分布等,对于多孔超细粉体而言,虽然还是这两个概念,但是其包含的内容及其分析方法要复杂得多。多孔粉体颗粒的形状千变万化,只有分子筛类颗粒上的孔的形状和尺寸非常规律,是由物质的晶体结构决定的,对于其他多数无定形的粉体却十分复杂,典型的单个颗粒剖面如图1所示,颗粒中的孔分为闭孔(Closed)、通孔(Passing)、盲孔(Deadend)、内部连通的通孔(Inter-co

2、ndected)等等,除了闭孔以外,都在要考察的范围;从孔形状看可分为缝隙形(Slits)、圆柱形(Cylindrical)、圆锥形(conical)、墨水瓶形(InkBottle)、内连通形(Iterstices)等,实际情况还要复杂得多,在孔径分布的分析中,通常取缝隙形和圆柱形两类;孔按尺寸分类(国际通用分类),可分为微孔(Micropores)孔径<2nm、中孔或介孔(Mesopores)孔径2~50nm、大孔(Macropores)孔径>50nm,微孔的下限是0.35nm,用气体吸附法可以分析

3、的孔径范围的上限为500nm,再大需用压汞法。图1单粒多孔粉体的横截面示意多孔粉体尺寸小且孔的形状又十分复杂,其表面特征无法直接进行观察与测定,气体吸附法是一个非常科学而巧妙的方法,通俗的说,就是用气体分子作为度量的“标尺”,通过对物质的表面吸附进行严密的测定,实现对粉体表面特征的描述。众所周知,气体与清洁固体表面接触时,在固体表面上气体的浓度高于气相,这种现象称为吸附,吸附气体的固体物质称为吸附剂,被吸附的气体称为吸附质,吸附可分为物理吸附和化学吸附,用气体吸附法表征粉体表面特性需采用低温物理吸附,

4、例如在液氮温度下氮气的吸附;固体表面的吸附是一个动态过程;在一定的外界条件下,当吸附速率与脱附速率相等时,固体表面上的气体量维持不变,称为吸附平衡;在恒定温度下,固体表面上的气体吸附量取决于压力,吸附量随压力而变的曲线称为等温吸附曲线,他是固体物质吸附特性的最重要表现。比表面及孔隙度的测定与分析,基本上都依赖于等温吸附曲线,其压力的范围涉及很宽,对于极微孔填充吸附的平衡压力低于10-5大气压,对于500nm的大孔毛细凝聚的平衡压力达到气液平衡时的饱和蒸气压,例如液氮温度时氮气的饱和蒸汽压为一个大气压。

5、不同固体的吸附等温线形状变化很大,如图2,是由国际纯粹与应用化学联合会(IUPAC)提出的物理吸附等温线分类(六种类型):1型:在低相对压力区域气体吸附量有一个快速增长,这归因于微孔填充。随后的近水平平台表明微孔已经充满,随后几乎没有进一步的吸附发生,达到饱和压力时可能出现吸附质凝聚,外表面相对较小的微孔固体,如活性炭、分子筛沸石和某些多孔氧化物,表现出这种等温线;II型:一般由非孔或大孔固体产生,B点通常被作为单层吸附结束的标志;III型:在非孔或大孔固体上发生弱的气-固相互作用时出现,不常见;IV

6、型:由介孔固体产生,典型特征是等温线的吸附曲线与脱附曲线不一致,出现迟滞回线;V型:来源于微孔和介孔固体上的弱气-固相互作用,不常见;VI型:以其吸附过程的台阶状特性而著称,台阶来源于均匀非孔表面的依次多层吸附,不常见;等温线的形状与吸附质和吸附剂的本性相关,Ⅰ、Ⅱ、Ⅳ型最常见,可得到吸附质和吸附剂性质的许多信息,并可用于比表面及孔径分布的计算。比表面的测定和分析比较简单,当固体表面吸附了一层氮分子时,比表面可从单层饱和吸附量(Vm)求得;从单层吸附理论推出Langmuer比表面方程,由多层吸附理论,

7、发展出BET方程,还有一种三参数BET方程,三种比表面的计算方程分列如下:Langmuir方程      P/V=1/Vm•b+(1/Vm)•PBET方程        P/V(Po-P)=1/VmC+(C-1)P/VmCPo三参数BET方程    [1-(P/Po)n]P/V(Po-P)=1/VmC+(C-1)P/VmCPoBET比表面规定在氮分压0.05~0.35范围中,选择3~5个压力,测量出实际氮吸附量,然后运用BET方程求出Vm,进而计算出比表面。近来发现对于含微孔的粉体如活性炭,其吸附能力

8、很强,如果采用通常的BET比表面测定方法,在分压0.05~0.35的范围中其线性很差,比表面数值偏小,而且系数C出现负值,因此对BET方程的应用范围提出了质疑,有研究认为,对于活性炭应该将BET的线性部分修正到0.05~0.1,这时C值出现在正值,且BET比表面值会逼近Langmuier比表面值。如果采用三参数BET方程,修正参数N取1.2~1.5,也可以得到同样的效果。在微孔的条件下,当氮分压<0.01时,微孔中已产生气体的填充,因此测定BET比表面时

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。