欢迎来到天天文库
浏览记录
ID:26188768
大小:831.61 KB
页数:6页
时间:2018-11-25
《空间点线面的位置关系和公理》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、.WORD完美格式.1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面).公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理4:平行于同一条直线的两条直线平行.2.直线与直线的位置关系(1)位置关系的分类(2)异面直线所成的角①定义:过空间任意一点P分别引两条异面直线a,b的平行线l1,l2(a∥l1,b∥l2),这两条相交直线所成的
2、锐角(或直角)叫作异面直线a,b所成的角(或夹角).②范围:.3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况.4.平面与平面的位置关系有平行、相交两种情况.5.等角定理空间中,如果两个角的两边分别对应平行,那么这两个角相等或互补.【知识拓展】1.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行..专业知识编辑整理..WORD完美格式.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一
3、条直线与已知平面垂直.2.异面直线的判定定理经过平面内一点的直线与平面内不经过该点的直线互为异面直线.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.( )(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.( )(3)两个平面ABC与DBC相交于线段BC.( )(4)经过两条相交直线,有且只有一个平面.( )(5)没有公共点的两条直线是异面直线.( )1.下列命题正确
4、的个数为( )①梯形可以确定一个平面;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A.0B.1C.2D.32.(2016·浙江)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则( )A.m∥lB.m∥nC.n⊥lD.m⊥n3.(2016·合肥质检)已知l,m,n为不同的直线,α,β,γ为不同的平面,则下列判断正确的是( )A.若m∥α,n∥α,则m∥nB.若m⊥α,n∥β,α
5、⊥β,则m⊥nC.若α∩β=l,m∥α,m∥β,则m∥lD.若α∩β=m,α∩γ=n,l⊥m,l⊥n,则l⊥α4.(教材改编)如图所示,已知在长方体ABCD-EFGH中,AB=2,AD=2,AE=2,则BC和EG所成角的大小是______,AE和BG所成角的大小是________..专业知识编辑整理..WORD完美格式.5.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.题型一 平面基本性质的应用例1 (1)(201
6、6·山东)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)已知空间四边形ABCD(如图所示),E、F分别是AB、AD的中点,G、H分别是BC、CD上的点,且CG=BC,CH=DC.求证:①E、F、G、H四点共面;②三直线FH、EG、AC共点. 如图,平面ABEF⊥平面ABCD,四边形ABEF与四边形ABCD都是直角梯形,∠BAD=∠FAB=90°,BC∥AD且BC=AD,
7、BE∥AF且BE=AF,G、H分别为FA、FD的中点.(1)证明:四边形BCHG是平行四边形;(2)C、D、F、E四点是否共面?为什么?.专业知识编辑整理..WORD完美格式.题型二 判断空间两直线的位置关系例2 (1)(2015·广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交(2)如图,在正方体ABCD-A1B1
8、C1D1中,M,N分别是BC1,CD1的中点,则下列判断错误的是( )A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行(3)在图中,G、N、M、H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有________.(填上所有正确答案的序号) (1)已知a,b,c为三条不重合的直线,有下列结论:①若a⊥b,a⊥c,则b∥c;②若a⊥b,a⊥c,则b⊥c;③若a∥b,b⊥c,
此文档下载收益归作者所有