欢迎来到天天文库
浏览记录
ID:25950189
大小:51.03 KB
页数:10页
时间:2018-11-23
《如何确定教学的重点和难点》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、教学重、难点的确定是教师进行教学设计时必须面对和进行的工作,而能否正确的确定教学的重、难点是高效率数学教学的前提,是提高数学课堂教学质量的重要保障和关键。但我们发现,在日常教学设计时往往有许多教师不能正确地确定教学的重、难点,究其原因主要是对教学重难点的意义和特征把握不准,缺乏一些确定重难点的方法所致。为此,本文就教学重难点的含义、特征以及确定方法作些讨论。 一、教学重、难点的含义 1.教学重点的含义、类型与特点 教学重点(简称重点)是指教学中的重点内容,是课堂教学中需要解决的主要矛盾,是教学的重心所在。教学重点是针对教材中的学
2、科知识系统、文化教育功能和学生的学习需要而言的。因此,它包含重点知识和具有深刻教育性的学科内容。重点的形成主要有以下三个方面:从学科知识系统而言,重点是指那些与前面知识联系紧密,对后续学习具有重大影响的知识、技能,即重点是指在学科知识体系中具有重要地位和作用的学科知识、技能。从文化教育功能而言,重点是指那些对学生有深远教育意义和功能的内容,主要是指对学生终身受益的学科思想、精神和方法;从学生的学习需要而言,重点是指学生学习遇到困难需要及时得到帮助解决的疑难问题。 相对于形成重点的三个方面,重点可分为知识重点、育人重点和问题重点。而按
3、重点的地位和作用又可把重点分为全书重点、章节重点(或单元重点),还有课时重点。全书重点一般是贯穿于整个中学数学重要的数学思想、方法和起核心作用的数学知识与技能,它是重点的最高层次,如“函数与方程的思想”和“函数”就是初中数学的重点,这是由于“函数与方程的思想”和“函数”贯穿于整个初中数学学习之中,是初中数学的重要数学思想和支撑初中数学的主干知识;章节重点或单元重点是贯穿于全章节或单元的主干知识、技能与方法,它的地位和作用不如全书重点大,属于中等层次;课时重点是指课堂教学时的重点。课时重点可以是章节重点或单元重点,也可以不是。如,对于学
4、生学习中普遍存在的疑难问题,教师教学时就会专门拿一节补救课(或称为纠错课)来解决。这时如何消除学生存在的疑难问题就成为了教学的重点,即课时重点,但问题解决后,若它在后面的学习中又不起支撑和奠基作用,则它就不再是重点了。对这类只限于该节课的重点(一旦该节课学习结束后它就不再是重点了),我们称其为“暂时重点”。 数学教学重点(简称为“数学重点”)是由其在数学知识体系和数学育人系统(又可称为数学德育系统或数学文化教育系统)在学生学习中的地位和作用以及学生的疑难问题决定的。它是数学教材中最重要的基础知识、基本技能、基本的数学思想、精神和方法
5、以及学生数学学习中遇到的疑难问题。 “数学重点”对学生进一步学习其它内容和数学素养的形成起着主导和关键作用,具有应用的广泛性、后继学习的基础性和育人性。同时,它又具有一定的层次性。全书重点层次最高,它主导着整个数学教学;章节重点(或单元重点)次之,它只主导本章节与单元教学,课时重点中的暂时重点是最低层次的重点。由此可知,不同层次的重点具有不同的地位、作用与特性。全书重点和章节重点在本书、全章节或单元的学习中始终处于一个重要的地位并在教学中起着主导作用,因此,它贯穿于全书或该章节或单元教学的始终,具有持续的稳定性。而课时重点中的暂时重
6、点则具有暂时性,它的地位和作用只限于该节课本身。 “数学重点”对学生数学学习的好坏和教学质量的提高具有十分重要的作用,教学中对重点内容不仅要求学生理解,还要求学生掌握和熟练运用,即重点在教学中应具有突出的地位。教学设计时不论是教学目标的确定、教学活动的安排(包括教师的分析讲解、学生的交流讨论与巩固练习等),学生练习题的设计都应围绕重点进行。例如,对重点内容练习的设计,必须提供给学生一定数量的、不同层次的练习题,既要有单项练习还要有变式练习和综合练习。只有这样才能使学生真正达到对重点内容的巩固、理解、掌握和熟练运用。 2.教学难点的
7、意义与形成原因 教学难点(简称为难点)是指那些太抽象、离学生生活实际太远的、过程太复杂的、学生难于理解和掌握的知识、技能与方法。 难点的形成主要有以下几个方面的原因:一是该知识远离学生的生活实际,学生缺乏相应的感性知识;二是该知识较为抽象,学生难于理解;三是该知识包含多个知识点,知识点过于集中;四是该知识与旧知识联系不大或旧知识掌握不牢或因大多数学生对与之联系的旧知识遗忘所致。 在教学中,难点如果属于第一种,教学中则应通过利用学生日常生活经验,充实感性知识得以突破;若属于第二种教学中则利用直观手段,尽量使用知识直观化、形象化,使
8、学生看得见,摸得着。如“数学归纳法原理”就很抽象,学生理解起来很困难,教学时教师可列举多米诺骨牌试验、放鞭炮等实例,将抽象的归纳法原理具体化、直观化,使学生看得见,从而可帮助学生突破、化解归纳法原理理解的难点;如果难点属
此文档下载收益归作者所有