基于机器学习的人脸检测系统

基于机器学习的人脸检测系统

ID:259430

大小:348.85 KB

页数:0页

时间:2017-07-15

基于机器学习的人脸检测系统_第页
预览图正在加载中,预计需要20秒,请耐心等待
资源描述:

《基于机器学习的人脸检测系统》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、基于机器学习的人脸检测系统摘要随着互联网在当今世界的应用越来越广泛,各类人机交互的智能方向层出不穷,机器学习应运而生。机器学习,是以一种方式来赋予机器以学习的能力,它的实践意义是通过训练数据,建立模型,然后使用模型进行预测的一种方法。人脸检测是机器学习的重要应用之一,近年来,基于机器学习的人脸检测系统逐渐成为了研究热点,受到了广泛的关注。在人脸检测方面,通过使用支持向量机和模板匹配模型相结合的方法实现人脸检测。支持向量机算法是一个比较经典的分类算法,其广泛的应用于回归分析和统计分类中,是一种基于机器学习的方法。支持向

2、量机算法首先将人脸像素作为分类器的输入,其次进行判断,判断区域内是否存在人脸,但是由于已知训练图像的尺度往往是固定的,可是检测过程做不到尺度不变,所以需要对多种尺度的图像进行检测,从而导致训练规模过大。模板匹配模型的基本思想,在成功检测到人脸并准确定位面部特征点之后,人脸的大致区域就可以被裁剪出来。准确提取人脸面部特征点之后,与库存的已知人脸进行对比,根据一个已知的人脸模型与待检测人脸图像匹配,寻找到正确的匹配位置,完成最终的分类。另外,在人脸检测的特征提取过程中,本文采用了PCA和LPP降维提取人脸图像的代数特征的

3、算法,实现了对人脸图像数据的训练及分类,这是本文的重点研究内容之一。本文采用了java语言编写、OpenCV框架搭建了人脸检测实验系统,实现了人脸检测技术,为SVM分类器和PCA、LPP算法提供了技术支持。关键词 机器学习;人脸检测;人脸识别;PCA;LPP-III-FaceDetectionSystemBasedonMachaineLearningAbstractWiththeapplicationofInternetintheworldmoreandmorewidely,theintelligentdirecti

4、onsofhuman-computerinteractionemergeinendlessly,andmachinelearningemergesasthetimesrequire.Machinelearningisawayofgivingmachinestheabilitytolearn,anditspracticalsignificanceisthroughtrainingdata,buildingmodels,andthenusingamodeltopredict.Facedetectionisoneofthe

5、importantapplicationsofmachinelearning.Inrecentyears,facedetectionbasedonmachinelearninghasbecomeahotresearchtopicandhasattractedextensiveattention.Infacedetection,facedetectionisachievedbycombiningsupportvectormachineandtemplatematchingmodel.Supportvectormachi

6、nes(SVM)isaclassicalclassificationalgorithm,whichiswidelyusedinregressionanalysisandstatisticalclassification.Itisamethodbasedonmachinelearning.Supportvectormachinealgorithmwillfirstfacepixelsastheinputoftheclassifier,thenjudgewhetherthereisafacejudgmentwithint

7、heregion,butduetotheknowntrainingimagescaleisalwaysfixed,butthedetectionprocessdonotscaleinvariant,soitisnecessarytodetecttheimageofavarietyofscales,resultinginlargescaletraining.Thebasicideaoftemplatematchingmodelisthatafterthesuccessfuldetectionofthefaceandac

8、curatelocationoffacialfeaturepoints,theapproximateareaofthefacecanbecutout.Aftertheaccurateextractionoffacialfeaturepoints,comparedwiththeknownfaceinventory,accordingtoaknow

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。